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Abstract: Drying is an essential food preservation method, improving product shelf life and quality while reducing 
transportation and storage costs. This study evaluated the drying kinetics of bitter gourd slices under halogen drying 
conditions using both traditional empirical models (Page, Midilli, Logarithmic, Peleg, and Two-Term) and the machine 
learning-based random forest (RF) model. Experiments were conducted at 60 °C, 65 °C, and 70 °C with slice thicknesses 
of 3, 5, and 7 mm. Model performance was assessed using the coefficient of determination (R²), root mean square error 
(RMSE) and mean absolute percentage error (MAPE). The results show that the RF model demonstrated the highest 
accuracy, with an average R2 of 0.9826, the lowest RMSE (0.0655), and MAPE (1.40 %). Its ability to capture non-linear 
drying behaviour made it the most reliable model. The Midilli model was the best-performing traditional model, with 
an average R2 of 0.9851, but its accuracy declined for thicker slices and higher temperatures. Logarithmic and Peleg 
models exhibited significant errors, particularly during the mid-to-late drying phases. The results highlight RF's robust-
ness and adaptability, outperforming traditional models in handling complex drying dynamics.
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Drying, one of the oldest food preservation methods, 
is vital in extending shelf life, reducing packaging costs, 
and minimising transportation weight. It  removes 
moisture from post-harvest products through simulta-
neous heat and mass transfer, lowering moisture levels 
to  inhibit microbial growth and preserve quality. The 
drying process is  influenced by  factors like tempera-
ture, humidity, air velocity, and drying time, making 
accurate modelling challenging due to the complexity 
of  these interactions. Recent advancements in drying 
technology aim to address these challenges with both 
natural and artificial methods in  (Azadbakht et al. 
2018; Bai et al. 2018; Omari et al. 2018). While natural 
drying systems, such as solar and wind drying, are cost-
effective, they face limitations in  parameter control, 
weather dependency, and contamination risks (Ku-
mar et al. 2016). Artificial drying technologies, includ-
ing convection (Przybył and Koszela  2023), radiation 

(Sadin et al. 2014; Delfiya et al. 2022), radio wave, mi-
crowave drying (Omari et al. 2018), and combination 
of  mid-infrared and freeze-drying (Antal 2023) offer 
greater precision and efficiency. Among these, halogen 
drying has gained popularity for its simplicity and abil-
ity to  maintain precise temperature control, making 
it  increasingly utilised in  food preservation (Planinić 
et al. 2005; Sumnu et al. 2005; Tran et al. 2023).

Bitter gourd, widely grown in tropical and subtropi-
cal regions, is  highly valued for its nutritional and 
medicinal properties (Gayathry and John 2022). In Vi-
etnamese cuisine and traditional medicine, it  is  used 
for its health benefits, including lowering blood sugar 
levels, aiding digestion, and reducing the risk of  car-
diovascular diseases and cancers. The rising demand 
for dried bitter gourd, particularly for herbal tea pro-
duction, highlights the importance of efficient drying 
methods like halogen drying. 
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Effective drying relies on  understanding the intri-
cate interplay of multiple factors. Traditional drying 
models, such as  Newton, Page, and Henderson-Pa-
bis, are widely used for predicting drying behaviour 
based on empirical data (Kaur et al. 2020; Antal 2023; 
Loan et al. 2023). While these models effectively cap-
ture general drying trends, they lack the flexibility 
to  address complex, non-linear patterns influenced 
by  factors such as  moisture diffusion, temperature 
variability, and slice thickness. These limitations can 
lead to  inconsistencies in  moisture content, texture, 
and colour retention, particularly for complex food 
matrices like bitter gourd. Advancements in machine 
learning, particularly random forest (RF), provide 
opportunities to  overcome these challenges. Studies 
have shown RF's superior predictive accuracy in food 
drying processes, outperforming traditional mod-
els in  predicting moisture content and quality met-
rics (Santos Pereira et al. 2018; Keramat-Jahromi et 
al. 2021). However, its application in  predicting bit-
ter gourd drying remains largely unexplored. There-
fore, this study explores the application of RF models 
in  drying bitter gourd slices using a  halogen dryer, 
addressing a  gap in  food drying research. The pri-
mary goal is to compare the RF model's performance 
against traditional drying models to assess its accura-
cy, reliability, and potential advantages. Additionally, 
the study investigates the RF model's interpretability 
through feature importance analysis, identifying key 
factors influencing the drying process. Insights from 
this analysis aim to  optimise drying conditions, en-
hancing energy efficiency and product quality. The 
research highlights the potential of  machine learn-
ing to advance food processing technologies and lays 
a foundation for future studies integrating data-driv-
en approaches into food preservation.

MATERIAL AND METHODS 

Material
The experiment was conducted under laboratory 

conditions at the Industrial University of Ho Chi Minh 
City, Vietnam. Fresh bitter gourds were sourced from 
a  local market each morning. Before the experiment, 
the samples were washed and air-dried. To determine 
the initial moisture content, the bitter gourd samples 
were oven-dried at 150 °C until their mass stabilised. 
The results showed that bitter gourd generally has 
an initial moisture content ranging from 92 to 95% (wet 
basis), aligning closely with values reported in previous 
research studies (Biswas et al. 2018).

Drying equipment
Figure 1 depicts the halogen dryer setup for the ex-

periments. The dryer measures 550 × 550 × 850 mm, 
featuring two plates with four stainless steel trays. Each 
plate includes three 100 W halogen lamps, providing 
a total power of 600 W. The chamber reaches a maxi-
mum temperature of 90 °C. A rotating shaft, controlled 
by  an  inverter, positions the trays, while a  solid-state 
relay (SSR) regulates lamp intensity to maintain stable 
drying temperatures. The SSR reduces intensity once 
the set temperature is  reached. The system has four 
temperature sensors: one for ambient temperature, 
two for internal drying temperature, and one for out-
let temperature. Two fans at  the top expel moisture 
during drying. Figure 1B shows the DDC-C46 device 
(PNTECH CONTROLS, Vietnam), which collects data 
via an  RS32 connection. The DDC software records 
data every 2 min after reaching a steady state. Before 
each experiment, the dryer was preheated for 30 min 
to  achieve the required conditions. Once stabilised, 
bitter gourd samples were placed on  trays, and the 
drying process began. The DDC-C46 ensured precise 
temperature monitoring, contributing to  reliable ex-
perimental results.

Determination of moisture content
During the drying process, the sample weight loss 

of the drying material is determined periodically every 
30 min and calculated according to the following for-
mula in published articles (Yasmin et al. 2022):

where: MC – moisture content wet basis of drying mate-
rial at the time of determination (%); mc – mass of drying 
material at time t (g); mk – mass of drying material at the 
time of determination t + 1 (g).

Drying model
Traditional drying models. For mathematical mod-

elling of the drying process, the following equation was 
used to calculate the moisture ratio (MR) of bitter gourd 
slices before fitting a model:

where: MR – moisture ratio (dimensionless); Mt – mean 
moisture content of the bitter gourd slices at any given 
time (kg water·kg dry matter–1); Mo – initial moisture 
content (kg water·kg dry matter–1); Me – equilibrium 
moisture content (kg water·kg dry matter–1).
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In long drying processes, the equilibrium moisture 
content Me is  generally negligible compared to  the 
initial moisture content Mo. Therefore, Equation (2) 
can be simplified to Equation (3) (Movagharnejad and 
Nikzad 2007).

As a  result, measuring the equilibrium moisture 
content is unnecessary for this Equation. Tradition-
al drying models are often empirical or semi-empir-

ical and are widely used in food drying applications. 
These models are based on  kinetic equations that 
describe the drying rate over time, typically assum-
ing a  particular drying mechanism. Table  1 lists 
some of the most frequently applied models for dry-
ing agricultural products. Each constant in  these 
drying models (k, a, b, c, ko, n) are determined by re-
gression analysis.

Random forest model. The RF model is  a  robust 
machine learning algorithm designed to  handle 
complex, non-linear relationships (Breiman  2001). 

Figure 1. Halogen dryer: (A) the dryer; (B) DDC-C46 con-
troller

(A)

(B)

t

o

M
MR

M
= (3)

https://cjfs.agriculturejournals.cz/


208

Original Paper	 Czech Journal of Food Sciences, 43, 2025 (3): 205–215

https://doi.org/10.17221/255/2024-CJFS

As an ensemble method, RF constructs multiple deci-
sion trees from random subsets of data and aggregates 
their outputs for accurate predictions while minimis-
ing overfitting (Svetnik et al. 2003). In food drying, RF 
surpasses traditional models by learning directly from 
data, effectively capturing interactions among factors 
like temperature, humidity, and slice thickness. For 
bitter gourd drying, RF predicts key outcomes such 
as moisture content, drying time, and quality metrics 
without relying on predefined equations (Azmi et al. 
2021). As is known, RF is a type of supervised learn-
ing algorithm that can be used for both classification 
and regression tasks. In  regression tasks, it  predicts 
continuous values by  averaging the results of  multi-
ple decision trees. Hence, this study selected the RF 
regression technique for predicting numerical values 
for drying. Three input variables consisted of drying 
time, slice thickness, and temperature – were used 
as  predictors, while the moisture ratio (MR) served 
as the target output. The model was trained on a ran-
domly selected subset of  the experimental dataset, 
and internal validation was carried out using the out-
of-bag (OOB) error estimation inherent to  random 
forests. The RF model was implemented with the 
number of trees set to 500 and the number of predic-
tors sampled at each node set to 3, following standard 
practice for regression tasks. Important RF param-
eters, such as sampling with replacement (bootstrap 
was selected True) and feature importance evaluation, 
were also enabled to enhance model interpretability. 
This configuration allowed the RF model to efficiently 
capture complex, non-linear drying dynamics with-
out reliance on predefined kinetic equations. The de-
tailed statistical evaluation of RF model performance, 

including R², RMSE, and MAPE metrics, is presented 
separately below.

Evaluation performance of drying models. The per-
formance of drying models, such as random forest and 
traditional methods, can be evaluated using several key 
metrics. Root mean squared error (RMSE) assess the 
magnitude of prediction errors, with RMSE being more 
sensitive to large deviations, while the coefficient of de-
termination (R2) score measures how well the model 
explains the variance in  drying data. Mean absolute 
percentage error (MAPE) provides a percentage-based 
error for easier interpretation across different experi-
ments. Additionally, computational efficiency, model 
robustness, and generalisation capacity are essential, 
as random forest and traditional models differ in their 
training time and ability to handle diverse drying condi-
tions. These metrics are calculated as follows:

where: yi – measured value of observed target in experi-
ment and iy  – predicted value from drying models; n – 
number of validation points; the accuracy assessment 
of  a model is  a  compromise between these measured 
values. 

Experimental setup
Several studies (Biswas et al. 2018; Yan et al. 2019), 

indicate that the drying temperature for bitter gourd 
typically ranges between 40 °C and 80 °C, depending 
on  the slice thickness and drying method used. 
Therefore, this study examines drying temperature 
and slice thickness as  key factors impacting the 
drying process. Temperature settings of  60, 65, and 
70 °C were selected, along with bitter gourd slices 
of 3, 5, and 7 mm thickness. The drying duration was 
standardised at 9 h across all experimental conditions. 
Each experiment was conducted in triplicate, and the 
average result was calculated for each condition. 

RESULTS AND DISSCUSSION

Results of experiment
This study collected 270 data points across nine 

experimental conditions, each repeated three times, 

Table 1. Thin-layer drying models developed by researchers 
for agricultural products (Movagharnejad and Nikzad 2007)

Model No. Name Formula
1 Page model  
2 Midilli model  

3 Logarithmic 
model  

4 Peleg model  

5 Two term model  

t – time (min); a, b, c, n – coefficients, dimensionless; k, ko, 
k1 – constant drying ratio coefficient (L·min–1); MR – mois-
ture ratio
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to train and test the RF model for predicting MR dur-
ing bitter gourd drying. The dataset, split into training 
and testing groups, included drying time, slice thick-
ness, and temperature as  independent variables, with 
MR as  the dependent variable. The same data were 
used to evaluate traditional drying models. The Table 2 
presents the training performance results across the 
nine conditions.

Table 2 provides a detailed comparison of the model 
parameters and statistical metrics used to evaluate the 
drying behaviour of bitter gourd slices under varying 
thicknesses and temperatures. The analysed models in-
clude Page, Midilli, Logarithmic, Peleg, Two-term, and 

RF. Key parameters (e.g. k, ko​, k1​, a, b, c, n) and statis-
tical metrics R², RMSE, and MAPE are presented for 
each model. 

The RF model consistently outperforms traditional 
models across all conditions, with R² values nearing 
1.0 (e.g.  0.9999), RMSE as  low as  0.0030, and MAPE 
as  low as  0.05% (e.g.  at  65 °C and 5 mm thickness). 
This highlights its superior predictive accuracy. 
Traditional models like Midilli and Logarithmic also 
show strong performance under specific conditions 
(e.g. R² of 0.9975 for Midilli at 60 °C and 3 mm thick-
ness) but generally exhibit higher RMSE and MAPE 
values. The Peleg and Two-term models demonstrate 

Table 2. Model parameters and statistical metrics for fitting drying models

Thick-
ness
(mm)

Tempe- 
rature
(°C)

Model
Model parameters

R2 RMSE MAPE 
(%)k ko k1 a b c n

3

60

Page 0.0018 – – – – – 1.3049 0.9975 0.0154 0.63
Midilli 0.0080 – – 1.0420 0.0001 – – 0.9908 0.0294 2.31

Logarithmic 0.0075 – – 1.0877 – 0.0500 – 0.9922 0.0271 2.35
Peleg – – – 108.3927 0.7356 – – 0.9767 0.0468 4.42

Two term – 0.0087 0.0086 0.5423 0.5181 – – 0.8825 0.1051 2.44
RF – – – – – – – 0.9975 0.0309 0.35

65

Page 0.0009 – – – – – 1.3861 0.9985 0.0125 0.23
Midilli 0.0064 – – 1.0566 0.0001 – – 0.9900 0.0319 1.54

Logarithmic 0.0058 – – 1.1372 – 0.0850 – 0.9914 0.0295 1.50
Peleg – – – 148.7522 0.6598 – – 0.9793 0.0459 2.61

Two term – 0.0072 0.0072 0.4309 0.6519 – – 0.9815 0.0435 1.57
RF none – – – – – – 0.9999 0.0030 0.10

70

Page 0.0021 – – – – – 1.4246 0.9966 0.0163 0.72
Midilli 0.0148 – – 1.0471 0.0000 – – 0.9829 0.0366 2.54

Logarithmic 0.0143 – – 1.0599 – –0.0151 – 0.9840 0.0354 2.97
Peleg – – – 48.5400 0.8560 – – 0.9468 0.0645 7.23

Two term – 0.0149 0.0150 0.5173 0.5345 – – 0.9824 0.0371 1.83
RF – – – – – – – 0.9918 0.0302 0.32

5

60

Page 0.0007 – – – – – 1.4523 0.9948 0.0232 0.59
Midilli 0.0069 – – 1.0579 –0.0001 – – 0.9825 0.0424 2.75

Logarithmic 0.0063 – – 1.1352 – –0.0819 – 0.9847 0.0397 2.77
Peleg – – – 135.0474 0.6761 – – 0.9692 0.0563 4.37

Two term – 0.0078 0.0078 0.5499 0.5396 – – 0.9732 0.0526 2.82
RF – – – – – – – 0.9964 0.0193 0.08

65

Page 0.0006 – – – – – 1.4532 0.9938 0.0253 0.34
Midilli 0.0063 – – 1.0516 –0.0002 – – 0.9824 0.0427 2.11

Logarithmic 0.0057 – – 1.1456 – –0.0985 – 0.9845 0.0401 2.08
Peleg – – – 149.7336 0.6504 – – 0.9718 0.0541 3.21

Two term – 0.0073 0.0073 0.5115 0.5723 – – 0.9713 0.0546 2.06
RF – – – – – – – 0.9988 0.0112 0.05
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Table 2. To be continued

Thick-
ness
(mm)

Tempe- 
rature
(°C)

Model
Model parameters

R2 RMSE MAPE 
(%)k k0 k1 a b c n

5 70

Page 0.0012 – – – – – 1.4558 0.9968 0.0172 0.61
Midilli 0.0106 – – 1.0616 –0.0001 – – 0.9810 0.0417 2.74

Logarithmic 0.0101 – – 1.0889 – –0.0310 – 0.9827 0.0397 2.97
Peleg – – – 78.1136 0.7900 – – 0.9533 0.0653 5.87

Two term – 0.0109 0.0110 0.5265 0.5403 – – 0.9787 0.0441 2.02
RF – – – – – – – 0.9990 0.0105 0.12

7

60

Page 0.0003 – – – – – 1.5343 0.9922 0.0294 8.02
Midilli 0.0041 – – 1.0448 –0.0003 – – 0.9881 0.0363 23.62

Logarithmic 0.0034 – – 1.3150 – –0.2735 – 0.9897 0.0339 22.50
Peleg – – – 236.3799 0.4846 – – 0.9846 0.0414 29.59

Two term – 0.0030 0.0029 21.1317 –20.0788 – – 0.9835 0.0428 5.02
RF – – – – – – – 0.9696 0.0488 1.01

65

Page 0.0003 – – – – – 1.5248 0.9929 0.0280 2.34
Midilli 0.0047 – – 1.0486 –0.0003 – – 0.9853 0.0402 10.82

Logarithmic 0.0040 – – 1.2499 – –0.2051 – 0.9872 0.0375 10.34
Peleg – – – 208.2510 0.5358 – – 0.9801 0.0468 14.22

Two term – 0.0056 0.0056 -6.7904 7.8043 – – 0.9558 0.0697 11.43
RF – – – – – – – 0.9984 0.0853 0.28

70

Page 0.0008 – – – – – 1.4496 0.9962 0.0123 0.89
Midilli 0.0075 – – 1.0611 –0.0001 – – 0.9834 0.0411 5.34

Logarithmic 0.0069 – – 1.1257 – –0.0694 – 0.9855 0.0384 5.40
Peleg – – – 122.2889 0.6993 – – 0.9676 0.0574 9.13

Two term – 0.0083 0.0083 0.5491 0.5388 – – 0.9755 0.0499 4.95
RF – – – – – – – 0.9997 0.0097 0.69

RF – random forest; RMSE – root mean square error; MAPE – mean absolute percentage error

more variability, with lower R² values and less reliable 
predictions. For instance, at 60 °C and 3 mm thickness, 
the Page model achieves an  R² of  0.9975 but shows 
higher RMSE (0.0154) and MAPE (0.63%) compared 
to RF. In contrast, the Two-term model underperforms, 
with R² of 0.8825 and MAPE of 2.44%.

As slice thickness increases, the performance 
of  traditional models declines significantly. For ex-
ample, the Midilli and Logarithmic models main-
tain high R² values at 3 mm but degrade as thickness 
rises to 7 mm. At 7 mm thickness, Peleg shows an R² 
of  0.9533 and a  MAPE of  29.59% (e.g.  at  60 °C), 
highlighting its diminished reliability. Meanwhile, the 
RF model remains robust, with R² values near 1.0, low 
RMSE (e.g.  0.0105), and minimal MAPE (e.g.  0.12% 
at  7 mm thickness and 70  °C), demonstrating its 
consistency and adaptability.

In summary, while traditional models like Page, Mi-
dilli, and Logarithmic offer reasonable fits under spe-
cific conditions, their predictive accuracy decreases 
with increasing thickness. The RF model, however, 
consistently delivers superior performance across 
all conditions, making it  the most accurate and reli-
able choice for modelling the drying kinetics of bitter 
gourd slices.

Performance evaluation of drying models 
Performance of drying models in drying conditions. 

Figure 2 compares actual and predicted MR values for 
various drying models at 60 °C across three slice thick-
nesses. For 3 mm slices, the RF and Midilli models 
demonstrate superior accuracy, closely matching the 
observed data throughout the drying process, while mi-
nor deviations are observed in the Peleg and Two-term 
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models during later stages. For 5 mm slices, the RF and 
Midilli models maintain their strong performance, with 
the Page and Logarithmic models showing slight de-
viations, particularly in the mid-drying stages, and the 
Peleg model exhibiting increasing discrepancies in  the 
later stages. For 7 mm slices, the RF model outperforms 
all other models, particularly during intermediate dry-
ing stages, while the Midilli model remains competitive 
but underpredicts MR at higher drying times. The Peleg 
and Two-term models fail to capture non-linear drying 
behaviour effectively, showing the largest deviations. 
Overall, the RF model consistently delivers the most ac-
curate predictions across all thicknesses, with the Midilli 
model performing well for thinner slices. Traditional 
models like Peleg and Two-term struggle with thicker 

slices, highlighting the RF model's robustness in manag-
ing complex, non-linear drying dynamics. Performance 
at 65 °C across 3, 5, and 7 mm thicknesses.

Figure  3 presents the performance of  various dry-
ing models at 65 °C across three slice thicknesses. For 
3 mm slices, the RF model delivers exceptional accu-
racy, followed closely by the Midilli model with mini-
mal deviations. The Page and Logarithmic models are 
reasonably accurate but show slight underpredictions 
during later stages, while the Peleg and Two-term mod-
els exhibit significant inaccuracies in the final phases. 
For 5 mm slices, the RF model continues to dominate, 
with Midilli and Page models maintaining strong per-
formance but showing minor underestimations during 
later drying stages. In  contrast, the Logarithmic and 
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Figure 2. Comparison of observed and predicted moisture 
ratios (MR) for various drying configurations: (A) 60 °C, 
3 mm; (B) 60 °C, 5 mm; (C) 60 °C, 7 mm
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Peleg models exhibit increasing deviations, particularly 
at  reduced drying rates in  the final stages. For 7 mm 
slices, the RF model remains the most accurate, effec-
tively capturing mid-drying trends, while the Midilli 
model demonstrates slight deviations in the later stag-
es. Traditional models such as Page, Logarithmic, and 
Two-term underpredict moisture beyond 270 minutes, 
and the Peleg model displays significant errors, failing 
to account for non-linear moisture diffusion. Overall, 
the RF model achieves the highest predictive accura-
cy across all slice thicknesses, particularly for thicker 
slices. While the Midilli model remains competitive, its 
accuracy diminishes as slice thickness increases. Tradi-
tional models, especially Peleg and Two-term, struggle 
to adapt to the complexities of non-linear drying con-
ditions, underscoring RF's robustness. Performance 
at 70 °C Across 3 mm, 5 mm, and 7 mm thicknesses.

Figure 4 compares observed and predicted MR val-
ues for various drying models at 70 °C across different 

slice thicknesses. For 3 mm slices, the RF model dem-
onstrates exceptional accuracy throughout the drying 
process, with the Midilli model performing well and 
showing minimal deviations. The Page and Two-term 
models provide moderate accuracy, while the Logarith-
mic and Peleg models underestimate moisture removal 
during the later stages. For 5 mm slices, the RF model 
continues to  excel, maintaining its strong predictive 
performance. The Midilli model remains effective but 
exhibits slight deviations in  the later stages, whereas 
the Page and Two-term models show growing inac-
curacies. The Logarithmic and Peleg models struggle 
significantly, failing to  capture mid-drying dynamics 
and non-linear trends. For 7 mm slices, the RF model 
remains the most accurate, though minor deviations 
occur in the later stages due to increased drying com-
plexity. The Midilli model shows greater deviations 
compared to  thinner slices, and traditional models 
such as Page, Logarithmic, Peleg, and Two-term exhib-
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Figure 3. Comparison of observed and predicted moisture 
ratios (MR) for various drying configurations: (A) 65 °C, 
3 mm; (B) 65 °C, 5 mm; (C) 65 °C, 7 mm
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it substantial errors, particularly in the mid-to-late dry-
ing stages. Overall, the RF model consistently delivers 
superior accuracy across all slice thicknesses, reinforc-
ing its effectiveness in managing complex, non-linear 
drying dynamics at higher temperatures. Overall, the 
RF model proves highly reliable under high-tempera-
ture and non-linear conditions, particularly for thicker 
slices. While the Midilli model performs well, it shows 
diminishing accuracy for 7 mm slices. Traditional 
models, especially Peleg and Logarithmic, are least ef-
fective for advanced drying stages.

Influence of  temperature on  drying models. Tem-
perature significantly influences drying kinetics, with 
distinct trends across conditions. At 60 °C, the slower 
drying rate supports extended moisture diffusion, with 
RF showing exceptional accuracy and Midilli perform-
ing well during early and late stages, while traditional 
models like Logarithmic and Peleg exhibit significant 
deviations, especially for thicker slices. At 65 °C, faster 

drying promotes uniform moisture removal, with RF de-
livering near-perfect predictions and Midilli improving 
during mid-drying stages. Traditional models like Page 
and Two-term perform better but still struggle with 
thicker slices, while Logarithmic and Peleg models show 
notable inaccuracies. At 70 °C, rapid drying enhances ef-
ficiency, with RF excelling across all thicknesses. Midilli 
remains strong but shows reduced accuracy for thicker 
slices in later stages, while traditional models, particu-
larly Logarithmic and Peleg, display substantial devia-
tions. Overall, RF consistently outperforms traditional 
models, demonstrating superior flexibility and accura-
cy, with Midilli being the most competitive traditional 
model, particularly at moderate drying conditions.

CONCLUSION

Bitter gourd slices were dried using a halogen drier 
at 60 °C, 65 °C, and 70 °C, with thicknesses of 3, 5, and 
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Figure 4. Comparison of observed and predicted moisture 
ratios (MR) for various drying configurations: (A) 70 °C, 
3 mm; (B) 70 °C, 5 mm; (C) 70 °C, 7 mm
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7 mm. This study compared traditional empirical dry-
ing models (Page, Midilli, Logarithmic, Peleg, and Two-
Term) with a machine learning approach, RF, to predict 
the drying kinetics of bitter gourd slices. The RF model 
consistently outperformed traditional models, achiev-
ing the highest R2 values and lowest error metrics 
(RMSE and MAPE), thanks to  its ability to  capture 
complex, non-linear interactions between drying pa-
rameters. Among traditional models, Midilli and Page 
performed well under moderate conditions but strug-
gled with variability in temperature and slice thickness.

Temperature significantly impacted model accu-
racy, with higher temperatures improving fits across 
all models due to accelerated moisture removal. How-
ever, traditional models, limited by  their simplified 
equations, often failed to  address the multi-dimen-
sional effects of temperature and moisture diffusion. 
While RF demonstrated superior flexibility and accu-
racy, its reliance on extensive data and computation-
al resources may pose challenges for industrial use. 
In  contrast, traditional models remain practical for 
applications requiring moderate accuracy due to their 
simplicity and ease of implementation.

This study highlights the need to choose drying mod-
els based on operational requirements and resources. 
Hybrid approaches combining RF's accuracy with the 
interpretability of traditional models could offer a bal-
anced solution, providing high precision, practicality, 
and adaptability for diverse drying processes.
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