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Abstract: Peanut as an important crop, plays an important role in agricultural production, which is rich in edible veg-
etable oil and protein. The variety of peanut affects the content of vegetable oil and protein. Therefore, the classification
of peanut variety can better promote the sustainable development of agriculture. In this study, hyperspectral imaging
technology is used to achieve peanut variety classification. In addition, the spatial-spectral extreme learning machine
(SS-ELM) is proposed to process the hyperspectral data to get the final classification label. To fully explore the spatial
structure information of hyperspectral data, propagation filtering is integrated into the framework of extreme learn-
ing machine (ELM). The average accuracy of the improved ELM model on five varieties of peanuts dataset (Luhua 11,
Dabaisha, Xiaobaisha, Fenghua, and Luohanguo 308) is 98.32%, which is higher than other classic models. The experi-
mental results show that the improved ELM can classify peanut of different varieties by hyperspectral imaging.
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Peanut, also known as peanut and evergreen fruit,
is an important edible oil raw material and cash crop
in more than 100 countries around the world. Cur-
rently, China is the world's largest producer of peanuts,
and its output value ranks fourth among major crops,
after rice, corn and wheat. Peanut has the advantages
of large-scale production, efficient planting, high ef-
ficiency of oil production, excellent oil quality, strong
international competitiveness and broad demand pros-
pects (Carrin and Carelli 2010). It has obvious advan-
tages and potential in ensuring the supply of edible

vegetable oil in China. In recent years, in order to meet
the increasing demand of agriculture and industry
(Wright 1980), seed hybridisation technology has been
widely used. However, this has also led to a rapid in-
crease in peanut varieties, with more than 500 peanut
varieties now available, including more than 30 excel-
lent varieties. The cultivation of excellent peanut varie-
ties is very important for peanut cultivation.

Although there are many varieties of peanuts, the
differences between them are sometimes difficult
to distinguish by the naked eye, and even the peanut
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of the same variety may vary in particle size. In addi-
tion, there are also various situations that lead to the
mixing of different varieties during peanut growth,
such as during harvesting, transportation and storage
(Liu et al. 2022). These factors result in the complex-
ity and diversity of peanut varieties, and also increase
the difficulty of peanut quality control. Different varie-
ties of peanuts have different nutritional composition
and characteristics, and the different planting environ-
ment and way will also affect the growth of peanuts.
Mixing different varieties of peanuts may lead to lower
yields, so it is important to identify peanut varieties be-
fore planting.

In the process of classifying peanut varieties, the
traditional method of variety classification is manual
identification, where the identification relies on the
human eye to observe the shape of the peanut seed,
peel characteristics, colour, and other appearance
features, which requires rich experience to accurately
identify different varieties of peanuts. However, this
method has disadvantages such as destructiveness,
time-consuming and laborious, limited accuracy, and
low efficiency (Fabiyi et al. 2020). To solve the above
drawbacks of traditional identification methods, non-
destructive testing technology has been proposed, ma-
chine vision (Mohi-Alden et al. 2023), near infrared
spectroscopy (Jiang et al. 2022), hyperspectral imaging
technology have been widely used in agriculture and
food inspection.

Machine vision is mainly based on morphological
characteristics, and has been widely used in the break-
age detection of seeds. But for certain different varie-
ties peanuts with similar colour and same morphology
(Wang et al. 2015), they can no longer be accurately
and efficiently classified by machine vision.

Near-infrared spectroscopy is a well-estab-
lished non-destructive testing technique that can
be used for non-destructive testing of complex samples
(Zhang et al. 2022). NIR spectroscopy is used to obtain
spectral information about a substance by measuring
the absorption or reflection of near-infrared (NIR)
light, and is now widely used to analyse the internal
chemical composition of food (Qu et al. 2015). Al-
though NIR has a wide spectral range and high spectral
resolution, NIR spectral data are presented in the form
of spectral curves, but do not provide spatial informa-
tion about the sample, such as shape, size, and location.
If the spatial information of the sample composition
is not considered when analysing the data, a large
amount of important information may be lost, affect-
ing the processing results.
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Hyperspectral imaging is an emerging technology
that incorporates traditional imaging techniques and
spectroscopy. It acquires both spatial and spectral in-
formation about an object (Huan et al. 2019), and the
data are presented as a three-dimensional spatial cube
(x x y x A), where x and y denote the spatial dimensions,
A denotes the continuous wavelength. Each pixel cor-
responds to a spectral curve that reflects the character-
istic reflectance properties. Thus, spectral information
can uniquely describe, and distinguish substance types
(Elmasry et al. 2012).

In recent years, with the continuous development
of hyperspectral imaging technology, it has now be-
come a research hotspot for agricultural product de-
tection. Yuan el al. (2020) studied the mouldy peanuts
recognition by a small number by critical band cohe-
sion classifiers (EC) based on hyperspectral images.
Then, support vector machine (SVM)-based EC, par-
tial least squares-discriminant analysis (PLS-DA), and
cluster-independent soft pattern classifiers (SIMCA)
were used to select the critical wavelengths to identify
healthy and mouldy peanuts. The overall pixel classi-
fication accuracies of EC, SVM, PLS-DA and SIMCA
are 97.66, 97.53, 95.31, and 97.36%, respectively. Liu
et al. (2020) established Deeplab v3+, Segnet, Unet, and
Hypernet as control models, integrated peanut Identi-
fication Index (PRI) into hyperspectral images as pre-
extraction of data features, and then integrated the
constructed multi-feature fusion block into the control
model as a feature enhancement module. The experi-
mental results show that the average accuracy of four
control models is increased by 0.61% to 1.15%. Through
feature enhancement, the accuracy of the model is im-
proved by 0.43-4.96%. This indicates that the pro-
posed method has a significant effect in improving
the accuracy of peanut recognition. Zou et al. (2022)
studied the classification algorithms of different pea-
nut varieties based on hyperspectral imaging technol-
ogy, and the best classification algorithm among them
MF-LightGBM-LightGBM-Optuna-LightGBM,
after using various data preprocessing methods and
feature band extraction methods. The optimisation
effect of the model was obvious after using Optuna al-
gorithm to optimise the model, the optimisation effect
of LightGBM is obvious, especially in running time,
which is 11 times faster than XGBoost and 16 times
faster than before optimisation. Wu et al. (2022) pre-
processed the hyperspectral data with median filtering
and adopted four variable selection methods to ob-
tain characteristic wavelengths for mildewing detec-
tion of peanuts. The study compared the performance
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of stacked ensemble learning (SEL) model with ex-
treme gradient boosting algorithm (XGBoost), illumi-
nation gradient boosting algorithm (LightGBM), and
type boosting algorithm (CatBoost). The results show
that MF-LightGBM-SEL model has the highest predic-
tion accuracy, reaching 98.03%, and the modelling time
is only 0.37 s.

Existing classification methods in processing hyper-
spectral data have problems such as high computation-
al cost and sensitivity to data noise, and hyperspectral
data itself is characterised by rich information and
high computational complexity. Therefore, to over-
come these challenges and make more effective use
of hyperspectral data, a classification method based
on a space-spectral extreme learning machine for the
rapid and lossless classification of peanut varieties
is proposed to improve classification accuracy, reduce
computational costs, and enhance model stability and
generalisation ability. The main contribution of this ar-
ticle are as follows: i) The hyperspectral imaging tech-
nology is used to obtain the spectral information under
different bands, which effectively solves the problem
of same-colour foreign matter. ii) The spatial-spectral
extreme learning machine (SS-ELM) model is pro-
posed by combining spatial and spectral information
into the extreme learning machine (ELM) framework,
and to achieve peanut variety classification by using
spatial filtering that incorporates local spectral spatial
context integration and reshaping mechanisms into the
hidden layer feature representation.

The rest of this article is organised as follows. The sec-
ond part briefly introduces sample collection, label
preparation and ELM algorithm. In section Material
and Methods, the SS-ELM algorithm for hyperspectral
image classification is proposed, and the method of hy-
perspectral image classification by spatial information
propagation filtering fusion is introduced in detail.
The experimental results are given in section Results
and Discussion. Finally, section Conclusion summa-
rises the thesis.

MATERIAL AND METHODS

Sample preparation

Five peanut varieties (Luhua 11, Dabaisha, Xiaobai-
sha, Fenghua, and Luohangguo 308) with similar ap-
pearance are taken as research objects. Five peanuts
from each variety were selected as experimental sam-
ples. The sample was placed flat on a 17.5 x 17.5 cm
black tray and the data set was collected using a spec-
tral camera.

Hyperspectral image acquisition

In the experiment of peanut hyperspectral image ac-
quisition, a near-infrared hyperspectral camera of the
'FS-15' series from Hangzhou Caipu company and fig-
spec software were used. The effective spectral band
range of this camera is 900—1 700 nm, and the spectral
resolution is 6 nm. There are 256 bands in total, and the
pixel size of the imaging is 601 x 320.

To capture the images, the peanut sample tray was
placed on a motorised stage as shown in Figure 1A-B.
The distance between the peanut sample and the cam-
era lens was set to 0.26 m, and the moving speed of the
sample was set to 20.801 mm:s~!. The exposure time
of the hyperspectral camera was set as 15 000 ps. Due
to the influence of noise caused by environment fac-
tors and dark current of the instrument, it is necessary
to execute black and white correction respectively be-
fore sample collection.

Spectral correction

Because the dark current generated by the ther-
mal movement inside the electronic components
will affect the signal-to-noise ratio of the image,
it is necessary to compensate the influence of the
dark current on the data through dark current cor-
rection to improve the quality and stability of the
data. And the spectral distribution of the light source
may not be uniform, the light intensity at each wave-
length is also different, so it is also necessary to elimi-
nate the difference in spectral response at different
wavelengths by white correction. The correction
formula is:

RO_RB

- 1
* R,-R, W

where: R, — image after black and white correction;
R, — original hyperspectral image; Ry — black correc-
tion image with the lens cap on; R, — white correction
plate image.

Label preparation

In order to evaluate the effectiveness of the algo-
rithm, a corresponding set of labels is made, as shown
in Figure 2. The threshold segmentation method
is used to binarise the image, and a 3 x 3 mean filter
(Gupta 2011) is used to eliminate most of the noise
in the background, then the binary map is converted
to a gray-scale map. And then a Gaussian filter with
a standard deviation of 1 (Deng and Cahill 1993)
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(B)

Figure 1. (A) Peanut sample, (B) Hangzhou Caipu Technology Co., Ltd. 'FS-15' series of near-infrared hyperspec-

tral camera

is used to eliminate the remaining small portion of the
noise in the image, then the Canny edge detection algo-
rithm (Xuan and Hong 2017) is used to extract the edge
of the peanut. And then the hole-filling and corrosion
algorithm for final processing of the image is used, the
corroded structural unit is taken as a circular struc-

Hyperspectral image
of the 170" band

RGB image

Ground truth

Figure 2. Flowchart of label preparation
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Binary image

Corrosion image

ture with a radius of one. The result of label is obtained
by following the above steps.

Extreme learning machine. Extreme learning ma-
chine (ELM) is a randomised single-layer feedforward
neural network, which is mainly composed of three
parts: input layer, hidden layer, and output layer.

Mean filtered image Gaussian filtered image

Filling binary image Edge extraction image
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The main idea of ELM is to randomly assign the
weights between the input layer and the hidden layer,
and use quadratic programming problem to calculate
the weights of the output layer, which makes the train-
ing process of ELM very efficient. The network struc-
ture of extreme learning machine is shown in Figure 3.

For hyperspectral data X is a training dataset consist-
ing of n samples:

(X, 6)) j=L..N

j=1

L X = T ith
wt{llere, X; =[x, %, ... %] €R" — j sample a; the
n™ input attribute of the ELM; t = [tjl, b oo t].m] eR”
— j" sample as the m™ output label.

The number of hidden layer nodes of the ELM is L,
then the L hidden layer neurons of the ELM's output
function can be written as follows:

L
fL(Xj):;Big(wiij+bl.):t].,jzl,...,N (2)

where: w; = [w,), Wy, ..., w,,]TeR", i =1, ..; L — input
weight vector between the input node and the i hidden
layer node; b; — bias of the i hidden layer node; w,, b,
vy Bi)TER™
— output weight vector between the i hidden layer node
and the output node; g( ) — activation function (the acti-
vation function is usually a sigmoid function).

— randomly generated; B; = [B,;, By

— 1
Xi —¥ 2
RS d

input layer

hidden layer

The above N equations can be succinctly written
as follows (Equations 3—6):

HB=T 3)

Lxm

Nxm

where:H(Xj) =h(X)) =[gw, x X, + b)), .., g(w, x X+ by)]
— output of the hidden layer neuron for input X

output layer

Figure 3. Extreme learning machine network structure diagram

x; — input sample; w — input weight; b — bias parameter; § — output weight; d — input sample class; L — number of hidden

layer nodes; C — output sample class; ¢; — output label
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It maps the data from the n-dimensional input space
to the L-dimensional feature space. The matrix H is the
output matrix of the hidden layer and T is the tar-
get output matrix. The output weights [ are computed
by solving a linear least squares problem:

B=H'T 7)

where: H* — Moore-Penrose generalised inverse of the
implicit layer output matrix H.

The Moore-Penrose generalised inverse of H can
be computed as H* = H(HH?)™.. In order to obtain
better stability and generality, it is common to add
a positive value of 1/p to each diagonal element of HH”.
The output function of the ELM classifier is thus de-
noted as:

J

£,(X,) = g(X,)B = g(X, >HT(§+HHT)*T (8)

Classification of peanut hyperspectral images based
on spatial-spectral extreme learning machine

Nonlinear data transformation in high-dimen-
sional feature space increases the probability of lin-
ear separability of data in the transformation space.
In hyperspectral data, adjacent pixels are generally
composed of similar parts, and these similar parts
have a high probability of belonging to the same
class. It can be known from the ELM algorithm that
in the hidden representation process, adjacent pix-
els in the local window tend to represent the same
sample, and the hidden representation features are
very close to each other. In order to improve the clas-
sification performance of the algorithm, the spatial
neighbourhood information in hyperspectral im-
age (HSI) is incorporated into the ELM framework.
Currently, several popular spatial-context filters are
used in hyperspectral processing, such as propaga-
tion filter (Chang and Wang 2015) and bilateral filter
(Elad 2002). Therefore, a propagation filter is used
in this study to obtain a more accurate hidden repre-
sentation matrix.

w, =W, X exp
(j.k)(p.q) (j,k).(p-1.q-1) 2
[ 20

where: 6, 6, — scale parameters.
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Propagation filtering. Propagation filter is a novel
image filtering algorithm, which can not only smooth
adjacent image pixels but also preserve image context
information such as edges or texture regions without
applying explicit spatial kernel function.

For each input data, which is a N-dimensional vector,
the ELM maps the data to L-dimensional hidden layer
features H = [h,, h,, ..., h,] through a nonlinear trans-
formation. By using the propagation filter to get spatial
information integrated hidden feature representation,
which can be described as:

A = [PE(h,), PF(), .., PE(h,)] = [”l,h;,...,ﬂN] 9)

where: PF( ) — spatial propagation filtering operation;
hy, hy, ..., by — hidden layer output matrix.

Specifically, the 2D hidden layer matrix HeRN*E
is reshaped into a 3D cube Te RM*W*L, the same as the
original hyperspectral data cube, and consider each
feature vector as a 'pixel' in the 3D cube, where M is the
length of the image, W is the width of the image, and
L is the dimension of H. A propagation filter is applied
on a 3D cube to extract local contextual spectral spa-
tial features. Let 7T (j, k) denote the vector T at location
(j, k). The filtered output T produced by the propaga-
tion filter is calculated as follows.

1

T(j.k) =
(k) Z(j,k)(p,q)ezf\:f(i'k)

W soipa L (:K) (10)

where: N(j, k) — set of neighbouring pixels centred
at (j, k); wg; y, o — Weight of each pixel (p, q) for the
centre pixel T(j, k); Z(j, k) — normalisation factor
to ensure that the sum of all weights is equal to one.

The algorithm is driven by the idea that, for the pixel
(j, k) being related to pixel (p, q), the intermediate pix-
els between (j, k) and (p, g) not only need to be pho-
to-metrically related to (j, k), they are also required
to be adjacent-photo-metrically related to their prede-
cessors. As a result, the filter weights are derived by the
following definition (Equation 11):

207

r



Czech Journal of Food Sciences, 43, 2025 (1): 17-28

Original Paper

https://doi.org/10.17221/109/2024-CJES

As shown in Figure 4, the process of computing the
weights w4y (, o 18 demonstratec}. After obtaining
the propagation-filtered cube data 7', the feature ma-
trix HeRNL is obtained by reconstructing the 3D cube
T e RM*W*L into a 2D matrix, which will be used as the ro-
bust hidden feature output of the ELM hidden features.

Classification of hyperspectral images based
on spatial-spectral extreme learning machine.
In this paper, a hyperspectral image classification
method based on spatial spectral limit learning ma-
chine is proposed. First, hyperspectral data is put into
the input layer of ELM, and the corresponding hidden
layer features are learned by input weights. Then the
hidden layer features are spatially filtered, the propaga-
tion filtering method is used to combine spatial infor-
mation with spectral information. Finally, the output
weights learned from the training set were used to pre-
dict the classification results of the test set, to improve
the classification accuracy.

Let X eRN™? and T,eRN™" be the dataset and la-
belled set of libelled nodes, respectively, and N be the

(A)

“T(p,q)-T(p-1,q-1) }

Dl(p, ql.(p7l, g -1)] = eXP{ 3
20y

W60, .00 = W6k, - 1,q71)D[(P: ), (p—1,q - D] R[(, k), (p, q)] N

number of labelled nodes, and further let XueRN"Xd

be the dataset of unlabelled nodes, where N, is the
number of unlabeled nodes. In order to learn
the weights of the output layer, denoted as BERLX”’, the
output of the hidden layer is first divided into a labelled
part and an unlabeled part, H r and H » respectively.
The goal is to assign specific labels to those unlabeled
nodes, and for this purpose, the objective function
is written as:

(12)

The expression is reformulated as a regularised ridge
regression optimisation problem:

A2
A

2
F

argmin/() = argmin. | i, - T,

where: £ — loss function; A — non-negative regularisa-
tion factor.

\] ¢

—“T(j, 0-T(p, q)||2

RI(j, k1, (p> q)] = exp 5]
205

W60, (0 -1,q-1

I
o s
g

e

Figure 4. The illustration of the propagation filter: (A) the definition of propagation filtering weight, (B) the pattern

of performing 2D propagation filtering with d = 3 pixels

(p, q) — edge pixel; (j, k) — centre pixel; w — weight of each pixel; D — weight between the current pixel and the pre-
vious pixel; R — weight between the current pixel and the centre pixel; T — vector represented by the centre pixel;

G,4, G, — scale parameters
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Equation 13 has a closed solution, which can be ob-
tained by calculating the partial derivatives of £ with
respect to . The partial derivative can be written as:

ol

P

Setting Equation 14 to O results in the following
solution:

H'H B+Ap—-H!T, (14)

B = (H{H, + M,) " H{T, (15)
As a result, the labels of the unlabeled nodes can
be determined:

T =Hp

u u

(16)

RESULTS AND DISCUSSION

Experimental setup

Five visually clean, intact, uniformly sized, similarly
shaped, and closely coloured peanuts were selected
from each variety as experimental samples. The sam-
ples were arranged on a 17.5 x 17.5 cm black tray, and
data acquisition was performed using a spectral cam-
era. The size of dataset is 601 x 320 with 256 bands.
After removing the edge, a subset is adopted, which
contains of 434 x 320 pixels and 256 bands. The data-
set contains 37 905 samples and is classified into five
categories. The spectral curve is shown in Figure 5.

In order to verify the classification performance
of the method, several different classification methods
are compared: support vector machine (SVM) (Chang
and Lin 2011), sparse multinomial logistic regression
(SMLR) (Krishnapuram et al. 2005), sparse multino-
mial logistic regression with multi-level logic spatial
priors (SMLR-MLL) (Li et al. 2010), and sparse multi-
nomial logistic regression with spatially adaptive total

https://doi.org/10.17221/109/2024-CJES

variation (SMLR-SpATV) (Sun et al. 2014), extreme
learning machine (ELM) (Huang et al. 2006, 2011,
2015), bilateral filtering-extreme learning machine
(BE-ELM). All classification algorithms are imple-
mented using MATLAB (version R2022b) on an Intel
i7-13700HX 2.1 GHz CPU, RTX 4080 12 GB GPU, and
32 GBRAM.

The parameters of all the comparison algorithms refer
to the values provided in the original text. For the pro-
posed method, the scale parameters ¢, and d, in the
propagation filtering and bilateral filtering methods are
uniformly set to 0.8 and 2.

In the experimental results, overall accuracy (OA), av-
erage accuracy (AA), category accuracy (CA), and kappa
coefficient are employed to evaluate the performance
of different classification methods. Table 1 shows the
classification performance of various algorithms.

Parameter analysis

Number of training samples. 1% to 10% labelled
samples are used in this study to train our model, and
comparisons are made with other algorithms to explore
the classification performance with different numbers
of training samples. As can be seen from Figure 6A-C,
with the increase of the number of training samples,
each algorithm can obtain more comprehensive infor-
mation in the process of learning features, so the OA,
AA, and kappa of each algorithm are also improved.
The method proposed in this paper has the highest
classification accuracy and the best effect, which is su-
perior to other algorithms. In this experiment, the
number of training samples is 3 411.

Number of neurons in the hidden layer. In Fig-
ure 7A, the influence of the number of neurons
in the hidden layer of ELM, BF-ELM, and PF-ELM
on the classification results is shown. The average ac-
curacy for the number of neurons in the hidden layer
is plotted from 100 to 1 000 in intervals of 100. It can

1.0 1
0.9 1
0.8 1
o 074 — Luhua 11
§ 0.6 —— Dabaisha
‘g 0.5 — Xiaobaisha
T 04 o —— Fenghua
=03 —— Luohanguo 308
0.2 4
0.1 -
0.0 T T T T T T T
900 1000 1100 1200 1300 1400 1500 1600 1700 Figure 5. The spectral values curves
Wavelength (nm) of five different peanut varieties
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Table 1. Classification accuracy of each algorithm

Class SVM ELM BF-ELM PF-ELM SMLR SMLR-MLL SMLR-SpATV
1 Luhua 11 87.44 54.59 91.98 98.30 62.96 82.96 94.00

2 Dabaisha 83.87 43.37 91.66 99.12 52.02 70.68 96.70

3 Xiaobaisha 87.65 47.85 93.41 98.68 59.85 78.51 94.40

4 Fenghua 90.25 70.78 93.69 98.00 74.73 86.41 100.00

5 Luohanguo 308 86.27 56.73 95.16 97.57 59.86 81.76 97.38

OA (%) 87.23 55.49 93.16 98.32 62.52 80.37 96.66

AA (%) 87.09 54.67 93.18 98.33 61.88 80.07 96.49
Kappa 0.840 0.442 0.914 0.979 0.530 0.754 0.958

OA —overallaccuracy; AA —averageaccuracy; SVM - support vector machine; ELM - extreme learning machine; BF-ELM - bilat-
eral filtering-extreme learning machine; PF-ELM - propagation filtering-extreme learning machine; SMLR - sparse mul-
tinomial logistic regression; SMLR-MLL - sparse multinomial logistic regression with multi-level logic spatial priors;
SMLR-SpATYV - sparse multinomial logistic regression with spatially adaptive total variation

(A) 100 - (B) 100
90 - 90 -
80 80
70 4 70 7
60 = 60
<t
3 =
50 50
40 40
30 30
20 T T T T T T T T T 1 20 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Training samples (%)

©

—— SVM

—— ELM

—— BF-ELM

—&— PF-ELM
SMLR
SMLR-MLL

~6— SMLR-SpATV

Kappa

Training samples (%)

Figure 6. The influence of the number of training samples on the classification results

OA - overall accuracy; AA — average accuracy; SVM - support vector machine; ELM - extreme learning machine;
BE-ELM - bilateral filtering-extreme learning machine; PF-ELM - propagation filtering-extreme learning
machine; SMLR - sparse multinomial logistic regression; SMLR-MLL - sparse multinomial logistic regression with multi-
level logic spatial priors; SMLR-SpATV - sparse multinomial logistic regression with spatially adaptive total variation
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Size of the spatial filtering window
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Figure 7. The influence of the number of neurons in the hidden layer and the window size of spatial filtering on the
classification results

OA - overall accuracy; ELM - extreme learning machine; BF-ELM - bilateral filtering-extreme learning machine;
PF-ELM - propagation filtering-extreme learning machine

be seen from the figure that when the number of neu-
rons is 500, the classification accuracy of PF-ELM is the
highest. As the number of neurons increases, the clas-
sification accuracy of PF-ELM is generally better than
that of ELM and BF-ELM. It should be noted that when
the number of hidden layer neurons is too large, the
classification accuracy may be reduced. This is because
increasing the number of neurons in the hidden layer
also increases the risk of overfitting about training data.
Therefore, in the experiment, the value of hidden layer
nodes in ELM and BF-ELM algorithms is 800, and the
value of hidden layer nodes in PF-ELM algorithm is 500.

Window size for spatial filtering. The effect
of the proposed SS-ELM on the classification accu-
racy of spatial filtering with different window sizes will
be discussed. It can be seen from Figure 7B that the
classification accuracy of PF-ELM improves as the win-
dow size increases, but slowly tends to balance to some
extent. For the BF-ELM algorithm, as the window size
starts to become larger, the classification accuracy basi-
cally tends to balance. Therefore, in this experiment, the
spatial filtering window size of the two algorithms is 10.

Analysis of results

In the experiments, the classification accuracy of the
proposed method was assessed by comparing it with
other classification methods. Table 1 presents the OA,
AA, kappa coefficients, and accuracy for each category
for all algorithms. Additionally, Figure 8B—H illustrates
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the visual performance of the classification results for
all algorithms.

i) As shown in Table 1, ELM gets the lowest classi-
fication accuracy, with an OA of only 55.49%. Follow-
ing closely is SMLR, which also shows a relatively low
OA of 62.52%, falling below the 80% for classification
accuracy. The OA of SVM is only 87.23%.

ii) The performance of SMLR-MLLand SMLR-SPATV
is enhanced by incorporating spatial information from
hyperspectral data. These two methods demonstrate
a significant improvement in classification accuracy.
Specifically, the OA of SMLR-MLL achieves 80.37%,
which is 17.85% higher than that of SMLR. Addition-
ally, the AA increases by 18.19% and kappa increases
by 0.224 with the use of SMLR-MLL. On the other hand,
the OA of SMLR-SPATYV reaches an impressive 96.66%.
In comparison to SMLR, the OA of SMLR-SPATV
shows a remarkable increase of 34.14%, while AA in-
creases by 34.61% and kappa increases by 0.428.

iii) The classification accuracy of BF-ELM and
PF-ELM is improved by adding spatial information.
The OA of BF-ELM gets 93.16%, which is 37.67% high-
er than that of ELM, AA increases 38.51%, and kappa
increases 0.472. The OA of PF-ELM gets 98.32%, which
is 42.83%, 43.66% and 0.537 higher than the OA, AA,
and kappa of ELM. For BF-ELM and PF-ELM, it can
be seen that PF-ELM is better than BF-ELM, OA is in-
creased by 5.16%, AA is increased by 5.15%, and kappa
is increased by 0.065.
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(A) Real images

(E) PE-ELM — 98.32% (F) SMLR — 62.52%

(G) SMLR-MLL - 80.37% (H) SMLR-SpATYV - 96.66%

Figure 8. Classification performance and visualisation of each algorithm: (A) real images, (B) SVM, (C) ELM,
(D) BE-ELM, (E) PF-ELM, (F) SMLR, (G) SMLR-MLL, (H) SMLR-SpATV

SVM - support vector machine; ELM - extreme learning machine; BF-ELM - bilateral filtering-extreme learning
machine; PF-ELM - propagation filtering-extreme learning machine; SMLR - sparse multinomial logistic regression;
SMLR-MLL - sparse multinomial logistic regression with multi-level logic spatial priors; SMLR-SpATV - sparse multi-
nomial logistic regression with spatially adaptive total variation

iv) The classification performance of PF-ELM is better
than that of SVM, OA is increased by 11.09%, AA is in-
creased by 11.24%, and kappa is increased by 0.139.

v) Compared to SMLR-MLL and SMLR-SpATY,
PF-ELM demonstrates superior capability in captur-
ing context information between pixels in the image.
At the same time, the iterative calculation process
is also eliminated, thereby saving time and reducing
computational workload. Furthermore, PF-ELM ex-
hibits a significant improvement in classification ac-
curacy. In comparison to SMLR-MLL, PF-ELM shows
an increase of 17.95% in OA, 18.26% in AA, and 0.225
in kappa. When compared to SMLR-SpATYV, PF-ELM
achieves a 1.66% increase in OA, a 1.84% increase
in AA, and a 0.021 increase in kappa.

CONCLUSION

In this paper, a hyperspectral image classification
method based on spatial-spectral extreme learning ma-
chine (SS-ELM) is proposed by the authors to classify

peanut varieties quickly and accurately. The method
inherits all the advantages from ELM, a local spectral-
spatial context integration and reshaping mechanism
is incorporated into the hidden layer feature represen-
tation by using a context-aware propagation filtering
procedure. The experimental results show that the ac-
curacy of the improved ELM model on five varieties
of peanuts dataset (Luhua 11, Dabaisha, Xiaobaisha,
Fenghua, and Luohanguo 308) was 98.32%, which was
higher than other classic models, proving the feasibility
of hyperspectral imaging and ELM in peanut variety
identification and classification.
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