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Peanut, also known as  peanut and evergreen fruit, 
is an important edible oil raw material and cash crop 
in  more than 100 countries around the world. Cur-
rently, China is the world's largest producer of peanuts, 
and its output value ranks fourth among major crops, 
after rice, corn and wheat. Peanut has the advantages 
of  large-scale production, efficient planting, high ef-
ficiency of oil production, excellent oil quality, strong 
international competitiveness and broad demand pros-
pects (Carrin and Carelli 2010). It has obvious advan-
tages and potential in  ensuring the supply of  edible 

vegetable oil in China. In recent years, in order to meet 
the increasing demand of  agriculture and industry 
(Wright 1980), seed hybridisation technology has been 
widely used. However, this has also led to a rapid in-
crease in peanut varieties, with more than 500 peanut 
varieties now available, including more than 30 excel-
lent varieties. The cultivation of excellent peanut varie-
ties is very important for peanut cultivation.

Although there are many varieties of  peanuts, the 
differences between them are sometimes difficult 
to distinguish by  the naked eye, and even the peanut 
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of the same variety may vary in particle size. In addi-
tion, there are also various situations that lead to  the 
mixing of  different varieties during peanut growth, 
such as during harvesting, transportation and storage 
(Liu et al. 2022). These factors result in the complex-
ity and diversity of peanut varieties, and also increase 
the difficulty of peanut quality control. Different varie-
ties of peanuts have different nutritional composition 
and characteristics, and the different planting environ-
ment and way will also affect the growth of  peanuts. 
Mixing different varieties of peanuts may lead to lower 
yields, so it is important to identify peanut varieties be-
fore planting.

In the process of  classifying peanut varieties, the 
traditional method of  variety classification is  manual 
identification, where the identification relies on  the 
human eye to  observe the shape of  the peanut seed, 
peel characteristics, colour, and other appearance 
features, which requires rich experience to accurately 
identify different varieties of  peanuts. However, this 
method has disadvantages such as  destructiveness, 
time-consuming and laborious, limited accuracy, and 
low efficiency (Fabiyi et  al.  2020). To  solve the above 
drawbacks of traditional identification methods, non-
destructive testing technology has been proposed, ma-
chine vision (Mohi-Alden et  al.  2023), near infrared 
spectroscopy (Jiang et al. 2022), hyperspectral imaging 
technology have been widely used in  agriculture and 
food inspection.

Machine vision is  mainly based on  morphological 
characteristics, and has been widely used in the break-
age detection of seeds. But for certain different varie-
ties peanuts with similar colour and same morphology 
(Wang et  al.  2015), they can no  longer be  accurately 
and efficiently classified by machine vision.

Near-infrared spectroscopy is  a  well-estab-
lished  non-destructive testing technique that can 
be used for non-destructive testing of complex samples 
(Zhang et al. 2022). NIR spectroscopy is used to obtain 
spectral information about a  substance by measuring 
the absorption or  reflection of  near-infrared (NIR) 
light, and is  now widely used to  analyse the internal 
chemical composition of  food (Qu  et  al.  2015). Al-
though NIR has a wide spectral range and high spectral 
resolution, NIR spectral data are presented in the form 
of spectral curves, but do not provide spatial informa-
tion about the sample, such as shape, size, and location. 
If  the spatial information of  the sample composition 
is  not considered when analysing the data, a  large 
amount of  important information may be lost, affect-
ing the processing results.

Hyperspectral imaging is  an  emerging technology 
that incorporates traditional imaging techniques and 
spectroscopy. It acquires both spatial and spectral in-
formation about an object (Huan et al. 2019), and the 
data are presented as a three-dimensional spatial cube 
(x × y × λ), where x and y denote the spatial dimensions, 
λ denotes the continuous wavelength. Each pixel cor-
responds to a spectral curve that reflects the character-
istic reflectance properties. Thus, spectral information 
can uniquely describe, and distinguish substance types 
(Elmasry et al. 2012).

In recent years, with the continuous development 
of  hyperspectral imaging technology, it  has now be-
come a  research hotspot for agricultural product de-
tection. Yuan el al. (2020) studied the mouldy peanuts 
recognition by a small number by critical band cohe-
sion classifiers (EC) based on  hyperspectral images. 
Then, support vector machine (SVM)-based EC, par-
tial least squares-discriminant analysis (PLS-DA), and 
cluster-independent soft pattern classifiers (SIMCA) 
were used to select the critical wavelengths to identify 
healthy and mouldy peanuts. The overall pixel classi-
fication accuracies of EC, SVM, PLS-DA and SIMCA 
are 97.66, 97.53, 95.31, and 97.36%, respectively. Liu 
et al. (2020) established Deeplab v3+, Segnet, Unet, and 
Hypernet as control models, integrated peanut Identi-
fication Index (PRI) into hyperspectral images as pre-
extraction of  data features, and then integrated the 
constructed multi-feature fusion block into the control 
model as a feature enhancement module. The experi-
mental results show that the average accuracy of four 
control models is increased by 0.61% to 1.15%. Through 
feature enhancement, the accuracy of the model is im-
proved by  0.43–4.96%. This indicates that the pro-
posed method has a  significant effect in  improving 
the accuracy of peanut recognition. Zou et al.  (2022) 
studied the classification algorithms of  different pea-
nut varieties based on hyperspectral imaging technol-
ogy, and the best classification algorithm among them 
was MF-LightGBM-LightGBM-Optuna-LightGBM, 
after using various data preprocessing methods and 
feature band extraction methods. The  optimisation 
effect of the model was obvious after using Optuna al-
gorithm to optimise the model, the optimisation effect 
of  LightGBM is  obvious, especially in  running time, 
which is  11  times faster than XGBoost and 16  times 
faster than before optimisation. Wu et al.  (2022) pre-
processed the hyperspectral data with median filtering 
and adopted four variable selection methods to  ob-
tain characteristic wavelengths for mildewing detec-
tion of peanuts. The study compared the performance 
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of  stacked ensemble learning (SEL) model with ex-
treme gradient boosting algorithm (XGBoost), illumi-
nation gradient boosting algorithm  (LightGBM), and 
type boosting algorithm (CatBoost). The results show 
that MF-LightGBM-SEL model has the highest predic-
tion accuracy, reaching 98.03%, and the modelling time 
is only 0.37 s.

Existing classification methods in processing hyper-
spectral data have problems such as high computation-
al cost and sensitivity to data noise, and hyperspectral 
data itself is  characterised by  rich information and 
high computational complexity. Therefore, to  over-
come these challenges and make more effective use 
of  hyperspectral data, a  classification method based 
on a space-spectral extreme learning machine for the 
rapid and lossless classification of  peanut varieties 
is proposed to improve classification accuracy, reduce 
computational costs, and enhance model stability and 
generalisation ability. The main contribution of this ar-
ticle are as follows: i) The hyperspectral imaging tech-
nology is used to obtain the spectral information under 
different bands, which effectively solves the problem 
of same-colour foreign matter. ii) The spatial-spectral 
extreme learning machine (SS-ELM) model is  pro-
posed by  combining spatial and spectral information 
into the extreme learning machine (ELM) framework, 
and to  achieve peanut variety classification by  using 
spatial filtering that incorporates local spectral spatial 
context integration and reshaping mechanisms into the 
hidden layer feature representation.

The rest of this article is organised as follows. The sec-
ond part briefly introduces sample collection, label 
preparation and ELM algorithm. In  section Material 
and Methods, the SS-ELM algorithm for hyperspectral 
image classification is proposed, and the method of hy-
perspectral image classification by spatial information 
propagation filtering fusion is  introduced in  detail. 
The  experimental results are given in  section  Results 
and Discussion. Finally, section  Conclusion  summa-
rises the thesis.

MATERIAL AND METHODS

Sample preparation
Five peanut varieties (Luhua 11, Dabaisha, Xiaobai-

sha, Fenghua, and Luohangguo  308) with similar ap-
pearance are taken as  research objects. Five peanuts 
from each variety were selected as experimental sam-
ples. The  sample was placed flat on  a  17.5  ×  17.5 cm 
black tray and the data set was collected using a spec-
tral camera.

Hyperspectral image acquisition
In the experiment of peanut hyperspectral image ac-

quisition, a near-infrared hyperspectral camera of the 
'FS-15' series from Hangzhou Caipu company and fig-
spec software were used. The  effective spectral band 
range of this camera is 900–1 700 nm, and the spectral 
resolution is 6 nm. There are 256 bands in total, and the 
pixel size of the imaging is 601 × 320.

To capture the images, the peanut sample tray was 
placed on a motorised stage as shown in Figure 1A–B. 
The distance between the peanut sample and the cam-
era lens was set to 0.26 m, and the moving speed of the 
sample was set to  20.801 mm·s–1. The  exposure time 
of the hyperspectral camera was set as 15 000 μs. Due 
to  the influence of  noise caused by  environment fac-
tors and dark current of the instrument, it is necessary 
to execute black and white correction respectively be-
fore sample collection.

Spectral correction
Because the dark current generated by  the ther-

mal movement inside the electronic components 
will affect the signal-to-noise ratio of  the image, 
it  is  necessary to  compensate the influence of  the 
dark current on  the data through dark current cor-
rection to  improve the quality and stability of  the 
data. And the spectral distribution of the light source 
may not be uniform, the light intensity at each wave-
length is also different, so it is also necessary to elimi-
nate the difference in  spectral response at  different 
wavelengths by  white correction. The  correction 
formula is:

0 B
c

w B

R R
R

R R

−
=

−
	 (1)

where: Rc – image after black and white correction; 
R0 – original hyperspectral image; RB – black correc-
tion image with the lens cap on; Rw – white correction 
plate image.

Label preparation
In  order to  evaluate the effectiveness of  the algo-

rithm, a corresponding set of labels is made, as shown 
in  Figure  2. The  threshold segmentation method 
is used to binarise the image, and a 3 × 3 mean filter 
(Gupta  2011) is  used to  eliminate most of  the noise 
in  the background, then the binary map is  converted 
to  a  gray-scale map. And  then a  Gaussian filter with 
a  standard deviation of  1 (Deng  and Cahill  1993) 
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is used to eliminate the remaining small portion of the 
noise in the image, then the Canny edge detection algo-
rithm (Xuan and Hong 2017) is used to extract the edge 
of the peanut. And then the hole-filling and corrosion 
algorithm for final processing of the image is used, the 
corroded structural unit is  taken as  a  circular struc-

ture with a radius of one. The result of label is obtained 
by following the above steps.

Extreme learning machine. Extreme learning ma-
chine (ELM) is a randomised single-layer feedforward 
neural network, which is  mainly composed of  three 
parts: input layer, hidden layer, and output layer.

Figure 2. Flowchart of label preparation

Figure 1. (A) Peanut sample, (B) Hangzhou Caipu Technology Co., Ltd. 'FS-15' series of near-infrared hyperspec-
tral camera
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The main idea of  ELM is  to  randomly assign the 
weights between the input layer and the hidden layer, 
and use quadratic programming problem to calculate 
the weights of the output layer, which makes the train-
ing process of ELM very efficient. The network struc-
ture of extreme learning machine is shown in Figure 3.

For hyperspectral data X is a training dataset consist-
ing of n samples:

( ){ }
1

,  ,  1, ...,
N

j jjX t j N
=

=
      	                 

where: Xj  =  [xj1, xj2, …, xjn]T∈Rn – jth sample as  the 
nth input attribute of the ELM; tj = [tj1, tj2, …, tjm]T∈Rm 
– jth sample as the mth output label.

The number of hidden layer nodes of the ELM is L, 
then the L hidden layer neurons of  the ELM's output 
function can be written as follows:
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where: wi = [wi1, wi2, …, win]T∈Rn, i = 1, ...; L – input 
weight vector between the input node and the ith hidden 
layer node; bi – bias of the ith hidden layer node; wi, bi 
–  randomly generated; βi =  [βi1, βi2, …, βim]T∈Rm 
– output weight vector between the ith hidden layer node 
and the output node; g( ) – activation function (the acti-
vation function is usually a sigmoid function).

The above N  equations can be  succinctly written 
as follows (Equations 3–6):
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where: H(Xj) = h(X1) = [g(w1 × X1 + b1), ..., g(wL × Xj + bL)] 
– output of the hidden layer neuron for input Xj.

Figure 3. Extreme learning machine network structure diagram

xi – input sample; w – input weight; b – bias parameter; β – output weight; d – input sample class; L – number of hidden 
layer nodes; C – output sample class; ti – output label
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It maps the data from the n-dimensional input space 
to the L-dimensional feature space. The matrix H is the 
output matrix of  the hidden layer and T is  the tar-
get output matrix. The output weights β are computed 
by solving a linear least squares problem:

β = H+T	 (7)

where: H+ – Moore-Penrose generalised inverse of the 
implicit layer output matrix H.

The Moore-Penrose generalised inverse of  H can 
be  computed as  H+ =  HT(HHT)–1. In  order to  obtain 
better stability and generality, it  is  common to  add 
a positive value of 1/ρ to each diagonal element of HHT. 
The output function of  the ELM classifier is  thus de-
noted as:

1f ( ) g 1( ) g( ) ( )j j
T T

jL X X X H TH H −= β = +
ρ

	 (8)

Classification of peanut hyperspectral images based 
on spatial-spectral extreme learning machine

Nonlinear data transformation in  high-dimen-
sional feature space increases the probability of  lin-
ear separability of data in the transformation space. 
In  hyperspectral data, adjacent pixels are generally 
composed of  similar parts, and these similar parts 
have a  high probability of  belonging to  the same 
class. It can be known from the ELM algorithm that 
in  the hidden representation process, adjacent pix-
els in  the local window tend to  represent the same 
sample, and the hidden representation features are 
very close to each other. In order to improve the clas-
sification performance of  the algorithm, the spatial 
neighbourhood information in  hyperspectral im-
age (HSI) is  incorporated into the ELM framework. 
Currently, several popular spatial-context filters are 
used in  hyperspectral processing, such as  propaga-
tion filter (Chang and Wang 2015) and bilateral filter 
(Elad  2002). T﻿herefore, a  propagation filter is  used 
in this study to obtain a more accurate hidden repre-
sentation matrix.

Propagation filtering. Propagation filter is  a novel 
image filtering algorithm, which can not only smooth 
adjacent image pixels but also preserve image context 
information such as edges or  texture regions without 
applying explicit spatial kernel function.

For each input data, which is a N-dimensional vector, 
the ELM maps the data to L-dimensional hidden layer 
features H = [h1, h2, ..., hN] through a nonlinear trans-
formation. By using the propagation filter to get spatial 
information integrated hidden feature representation, 
which can be described as:

1 2 1 2[ ( ), ( ), , ( )] ,,,N NhH PF h PF h PF h h h = … = … 
 

 	 (9)

where: PF(  ) – spatial propagation filtering operation; 
h1, h2, ..., hN – hidden layer output matrix.

Specifically, the 2D hidden layer matrix H∈RN×L 
is reshaped into a 3D cube T∈RM×W×L, the same as the 
original hyperspectral data cube, and consider each 
feature vector as a 'pixel' in the 3D cube, where M is the 
length of the image, W is the width of the image, and 
L is the dimension of H. A propagation filter is applied 
on a 3D cube to extract local contextual spectral spa-
tial features. Let T (j, k) denote the vector T at location 
(j, k). The filtered output T produced by the propaga-
tion filter is calculated as follows.

( ) ( ) ( )
( )( , ),( , )

( , ) ,
, ,

,
1ˆ

j k
j k p q

p q
j k T j k

j
T w

Z k ∈
= ∑


	 (10)

where: Ν(j, k) – set of  neighbouring pixels centred 
at  (j, k); w(j, k)(p, q) – weight of each pixel (p, q) for the 
centre pixel T(j, k); Z(j, k) – normalisation factor 
to ensure that the sum of all weights is equal to one.

T﻿he algorithm is driven by the idea that, for the pixel 
(j, k) being related to pixel (p, q), the intermediate pix-
els between (j, k) and (p, q) not only need to be pho-
to-metrically related to  (j, k), they are also required 
to be adjacent-photo-metrically related to their prede-
cessors. As a result, the filter weights are derived by the 
following definition (Equation 11):

( ) ( ) 22

( , ),( , ) ( , ),( 1, 1) 2 2

( , ) ( , )1, 1
exp exp

2
,

2j k p q j k p q
d r

T j k T p qT T p q
w

p q
w − −

   − −− − − −
  = × ×

   σ σ   

 

			         (11)

where: σd, σr – scale parameters.
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number of  labelled nodes, and further let Xu∈RNu×d 
be  the dataset of  unlabelled nodes, where Nu is  the 
number of  unlabeled nodes. In  order to  learn 
the weights of the output layer, denoted as β∈RL×m, the 
output of the hidden layer is first divided into a labelled 
part and an  unlabeled part, ĤΓ and Ĥu, respectively. 
The goal is to assign specific labels to those unlabeled 
nodes, and for this purpose, the objective function 
is written as:

Ĥ TΓ Γβ = 	 (12)

The expression is reformulated as a regularised ridge 
regression optimisation problem:

2 21argmin ( ) argmin
2 2

ˆ
FF

H TΓ Γβ β

λ
β = β − + β 	 (13)

where: ℓ – loss function; λ – non-negative regularisa-
tion factor.

As shown in  Figure  4, the process of  computing the 
weights w(j, k), (p, q) is  demonstrated. After obtaining 
the  propagation-filtered cube data T̂ , the feature ma-
trix Ĥ∈RN×L is obtained by reconstructing the 3D cube 
T̂∈RM×W×L into a 2D matrix, which will be used as the ro-
bust hidden feature output of the ELM hidden features.

Classification of  hyperspectral images based 
on  spatial-spectral extreme learning machine. 
In  this paper, a  hyperspectral image classification 
method based on  spatial spectral limit learning ma-
chine is proposed. First, hyperspectral data is put into 
the input layer of ELM, and the corresponding hidden 
layer features are learned by  input weights. Then the 
hidden layer features are spatially filtered, the propaga-
tion filtering method is used to combine spatial infor-
mation with spectral information. Finally, the output 
weights learned from the training set were used to pre-
dict the classification results of the test set, to improve 
the classification accuracy.

Let XΓ∈RNΓ×d and TΓ∈RNΓ×m be  the dataset and la-
belled set of libelled nodes, respectively, and NΓ be the 

Figure 4. The illustration of the propagation filter: (A) the definition of propagation filtering weight, (B) the pattern 
of performing 2D propagation filtering with d = 3 pixels

(p, q) – edge pixel; (j, k) – centre pixel; w – weight of each pixel; D – weight between the current pixel and the pre-
vious pixel; R – weight between the current pixel and the centre pixel; T – vector represented by the centre pixel; 
σd , σr – scale parameters
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Equation 13 has a closed solution, which can be ob-
tained by  calculating the partial derivatives of  ℓ with 
respect to β. The partial derivative can be written as:

ˆ ˆT THH THΓ Γ Γ Γ

∂
= β + λβ−

∂β
 	 (14)

Setting Equation 14 to  0 results in  the following 
solution:

1) ˆˆ( T T
LH IH H T−

Γ Γ Γ Γβ = + λ 	 (15)

As a  result, the labels of  the unlabeled nodes can 
be determined:

ˆ
u uT H= β 	 (16)

RESULTS AND DISCUSSION

Experimental setup
Five visually clean, intact, uniformly sized, similarly 

shaped, and closely coloured peanuts were selected 
from each variety as experimental samples. The sam-
ples were arranged on a 17.5 × 17.5 cm black tray, and 
data acquisition was performed using a spectral cam-
era. The size of dataset is 601 × 320 with 256 bands. 
After removing the edge, a  subset is  adopted, which 
contains of 434 × 320 pixels and 256 bands. The data-
set contains 37 905 samples and is classified into five 
categories. The spectral curve is shown in Figure 5.

In order to  verify the classification performance 
of the method, several different classification methods 
are compared: support vector machine (SVM) (Chang 
and Lin  2011), sparse multinomial logistic regression 
(SMLR) (Krishnapuram et  al.  2005), sparse multino-
mial logistic regression with multi-level logic spatial 
priors (SMLR-MLL) (Li et al. 2010), and sparse multi-
nomial logistic regression with spatially adaptive total 

variation (SMLR-SpATV) (Sun et  al.  2014), extreme 
learning machine (ELM) (Huang et  al.  2006, 2011, 
2015), bilateral filtering-extreme learning machine 
(BF-ELM). All  classification algorithms are imple-
mented using MATLAB (version R2022b) on an Intel 
i7-13700HX 2.1 GHz CPU, RTX 4080 12 GB GPU, and 
32 GB RAM.

The parameters of all the comparison algorithms refer 
to the values provided in the original text. For the pro-
posed method, the scale parameters σr  and dr  in  the 
propagation filtering and bilateral filtering methods are 
uniformly set to 0.8 and 2.

In the experimental results, overall accuracy (OA), av-
erage accuracy (AA), category accuracy (CA), and kappa 
coefficient are employed to evaluate the performance 
of  different classification methods. Table  1  shows the 
classification performance of various algorithms.

Parameter analysis
Number of  training samples. 1% to  10% labelled 

samples are used in this study to train our model, and 
comparisons are made with other algorithms to explore 
the classification performance with different numbers 
of training samples. As can be seen from Figure 6A–C, 
with the increase of  the number of  training samples, 
each algorithm can obtain more comprehensive infor-
mation in the process of learning features, so the OA, 
AA, and kappa of  each algorithm are also improved. 
The  method proposed in  this paper has the highest 
classification accuracy and the best effect, which is su-
perior to  other algorithms. In  this experiment, the 
number of training samples is 3 411.

Number of  neurons in  the hidden layer. In  Fig-
ure  7A, the influence of  the number of  neurons 
in  the hidden layer of  ELM, BF-ELM, and PF-ELM 
on  the classification results is  shown. The average ac-
curacy for the number of neurons in the hidden layer 
is plotted from 100 to 1 000 in intervals of 100. It can 

Figure 5. The spectral values curves 
of five different peanut varieties
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Figure 6. The influence of the number of training samples on the classification results

OA – overall accuracy; AA – average accuracy; SVM − support vector machine; ELM − extreme learning machine; 
BF-ELM  −  bilateral filtering-extreme learning machine; PF-ELM − propagation filtering-extreme learning 
machine; SMLR − sparse multinomial logistic regression; SMLR-MLL − sparse multinomial logistic regression with multi-
level logic spatial priors; SMLR-SpATV − sparse multinomial logistic regression with spatially adaptive total variation
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Table 1. Classification accuracy of each algorithm

Class SVM ELM BF-ELM PF-ELM SMLR SMLR-MLL SMLR-SpATV
1 Luhua 11 87.44 54.59 91.98 98.30 62.96 82.96 94.00
2 Dabaisha 83.87 43.37 91.66 99.12 52.02 70.68 96.70
3 Xiaobaisha 87.65 47.85 93.41 98.68 59.85 78.51 94.40
4 Fenghua 90.25 70.78 93.69 98.00 74.73 86.41 100.00
5 Luohanguo 308 86.27 56.73 95.16 97.57 59.86 81.76 97.38
OA (%) 87.23 55.49 93.16 98.32 62.52 80.37 96.66
AA (%) 87.09 54.67 93.18 98.33 61.88 80.07 96.49
Kappa 0.840 0.442 0.914 0.979 0.530 0.754 0.958

OA – overall accuracy; AA – average accuracy; SVM − support vector machine; ELM − extreme learning machine; BF-ELM − bilat-
eral filtering-extreme learning machine; PF-ELM − propagation filtering-extreme learning machine; SMLR − sparse mul-
tinomial logistic regression; SMLR-MLL − sparse multinomial logistic regression with multi-level logic spatial priors; 
SMLR-SpATV − sparse multinomial logistic regression with spatially adaptive total variation
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Figure 7. The influence of the number of neurons in the hidden layer and the window size of spatial filtering on the 
classification results

OA – overall accuracy; ELM − extreme learning machine; BF-ELM − bilateral filtering-extreme learning machine; 
PF-ELM − propagation filtering-extreme learning machine

O
A

 (%
)

ELM BF-ELMBF-ELM PF-ELMPF-ELM

100 200 300 700 900400 500

Number of neurons

600 800 1 000

100

90

80

70

60

50

40

(A)

O
A

 (%
)

1 2 3 7 94 5

Size of the spatial filtering window

6 8 10

100

95

90

85

80

75

70

65

(B)

be seen from the figure that when the number of neu-
rons is 500, the classification accuracy of PF-ELM is the 
highest. As the number of neurons increases, the clas-
sification accuracy of PF-ELM is generally better than 
that of ELM and BF-ELM. It should be noted that when 
the number of  hidden layer neurons is  too large, the 
classification accuracy may be reduced. This is because 
increasing the number of neurons in the hidden layer 
also increases the risk of overfitting about training data. 
Therefore, in the experiment, the value of hidden layer 
nodes in ELM and BF-ELM algorithms is 800, and the 
value of hidden layer nodes in PF-ELM algorithm is 500.

Window size for spatial filtering. The  effect 
of  the proposed SS-ELM on  the classification accu-
racy of spatial filtering with different window sizes will 
be  discussed. It  can be  seen from Figure  7B that the 
classification accuracy of PF-ELM improves as the win-
dow size increases, but slowly tends to balance to some 
extent. For the BF-ELM algorithm, as the window size 
starts to become larger, the classification accuracy basi-
cally tends to balance. Therefore, in this experiment, the 
spatial filtering window size of the two algorithms is 10.

Analysis of results
In the experiments, the classification accuracy of the 

proposed method was assessed by  comparing it  with 
other classification methods. Table 1 presents the OA, 
AA, kappa coefficients, and accuracy for each category 
for all algorithms. Additionally, Figure 8B–H illustrates 

the visual performance of the classification results for 
all algorithms.

i) As shown in Table 1, ELM gets the lowest classi-
fication accuracy, with an OA of only 55.49%. Follow-
ing closely is SMLR, which also shows a relatively low 
OA of 62.52%, falling below the 80% for classification 
accuracy. The OA of SVM is only 87.23%.

ii) The performance of SMLR-MLL and SMLR-SPATV 
is enhanced by incorporating spatial information from 
hyperspectral data. These two methods demonstrate 
a  significant improvement in  classification accuracy. 
Specifically, the OA of  SMLR-MLL achieves 80.37%, 
which is 17.85% higher than that of SMLR. Addition-
ally, the AA increases by  18.19% and kappa increases 
by 0.224 with the use of SMLR-MLL. On the other hand, 
the OA of SMLR-SPATV reaches an impressive 96.66%. 
In  comparison to  SMLR, the OA of  SMLR-SPATV 
shows a  remarkable increase of  34.14%, while AA in-
creases by 34.61% and kappa increases by 0.428.

iii) The classification accuracy of  BF-ELM and 
PF-ELM is  improved by  adding spatial information. 
The OA of BF-ELM gets 93.16%, which is 37.67% high-
er than that of ELM, AA increases 38.51%, and kappa 
increases 0.472. The OA of PF-ELM gets 98.32%, which 
is 42.83%, 43.66% and 0.537 higher than the OA, AA, 
and kappa of ELM. For BF-ELM and PF-ELM, it  can 
be seen that PF-ELM is better than BF-ELM, OA is in-
creased by 5.16%, AA is increased by 5.15%, and kappa 
is increased by 0.065.
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iv) The classification performance of PF-ELM is better 
than that of SVM, OA is increased by 11.09%, AA is in-
creased by 11.24%, and kappa is increased by 0.139.

v) Compared to  SMLR-MLL and SMLR-SpATV, 
PF-ELM demonstrates superior capability in  captur-
ing context information between pixels in  the image. 
At  the same time, the iterative calculation process 
is  also eliminated, thereby saving time and reducing 
computational workload. Furthermore, PF-ELM ex-
hibits a  significant improvement in  classification ac-
curacy. In comparison to SMLR-MLL, PF-ELM shows 
an increase of 17.95% in OA, 18.26% in AA, and 0.225 
in kappa. When compared to SMLR-SpATV, PF-ELM 
achieves a  1.66% increase in  OA, a  1.84% increase 
in AA, and a 0.021 increase in kappa.

CONCLUSION

In this paper, a  hyperspectral image classification 
method based on spatial-spectral extreme learning ma-
chine (SS-ELM) is proposed by the authors to classify 

peanut varieties quickly and accurately. The  method 
inherits all the advantages from ELM, a local spectral-
spatial context integration and reshaping mechanism 
is incorporated into the hidden layer feature represen-
tation by  using a  context-aware propagation filtering 
procedure. The experimental results show that the ac-
curacy of  the improved ELM model on  five varieties 
of  peanuts dataset (Luhua  11, Dabaisha, Xiaobaisha, 
Fenghua, and Luohanguo 308) was 98.32%, which was 
higher than other classic models, proving the feasibility 
of  hyperspectral imaging and ELM in  peanut variety 
identification and classification.
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Figure 8. Classification performance and visualisation of each algorithm: (A) real images, (B) SVM, (C) ELM, 
(D) BF-ELM, (E) PF-ELM, (F) SMLR, (G) SMLR-MLL, (H) SMLR-SpATV

SVM − support vector machine; ELM − extreme learning machine; BF-ELM − bilateral filtering-extreme learning 
machine; PF-ELM − propagation filtering-extreme learning machine; SMLR − sparse multinomial logistic regression; 
SMLR-MLL − sparse multinomial logistic regression with multi-level logic spatial priors; SMLR-SpATV − sparse multi-
nomial logistic regression with spatially adaptive total variation
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