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Sorghum is among the most important cereals in the 
world. Being used mainly in  animal feed as  forage; 
however, the attention towards this crop by  farmers 
has grown due to the potential of sorghum grains; this 
is  because it  is  a  drought-resistant cereal and adapts 
very easily to new conditions; taking into account cli-

mate changes and declining water supplies; sorghum 
can be  a  great alternative as  a  commonly consumed 
cereal in  humans (Hossain et  al.  2022). The  com-
ponents of  sorghum are starch (65–80%), proteins 
(7–15%), polysaccharides (> 10%) and lipids (1.5–6%) 
(Frankowski et al. 2022); this cereal has a high content 
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of  phenolic compounds: phenolic acids, flavonoids 
and anthocyanins (Šárka et al. 2020); which are linked 
to multiple health benefits, such as anti-inflammatory, 
antioxidant, antibacterial, and antiglycemic proper-
ties. In addition, sorghum flour is gluten-free, making 
it  an  option in  the diet of  people with celiac disease 
(Frankowski et  al.  2022). Sorghum flours can be  suc-
cessfully used in the food industry due to their multi-
ple health benefits; to carry out the processing of these 
flours; a  technological option is  extrusion, a  profit-
able method for the processing of different products, 
modifying ingredients and operating conditions, with 
great advantages (improvement in  protein digestibil-
ity, acceptability and palatability of  the product) (Of-
fiah et  al.  2019); however, as  it  is  a  thermal process, 
the phenolic compounds of the flours can be affected; 
to improve the loss of these during extrusion, it is sug-
gested to carry out a prior process that improves the 
properties of  the grain, such as  germination (Gong 
et  al.  2018); a  bioprocess that increases nutritional 
bioavailability, increases the content of phenolic com-
pounds, as  well as  the antioxidant activity of  cereals 
(Chavarín et  al.  2019). Germination-extrusion have 
been used as  combined processes to  produce flours 
with better nutritional, nutraceutical and sensory 
properties; as  well as  greater microbiological quality 
by eliminating the microbial load of the sprouts when 
applying the extrusion process (Ohtsubo et al. 2005).

There are no reports on the combination of germi-
nation-extrusion technologies in  sorghum grain for 
the development of  functional flours. The  objective 
of this research was to study the effect of the process-
es; germination-extrusion, applied in  combination, 
under optimised conditions for each of  them; on  the 
chemical composition, nutritional value, antioxidant 
activity, content of total phenolic compounds and mi-
crobiological stability of  grain sorghum. In  addition, 
it is planned to obtain a functional extruded germinat-
ed sorghum flour with a high nutritional and nutraceu-
tical value that can be used to create functional foods.

MATERIAL AND METHODS

Material and chemicals
Sorghum seeds were purchased at the Rafael Buelna 

local market, Culiacán, Sinaloa, Mexico. The  ABTS 
[2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic 
acid)] and DPPH (2,2-diphenyl-1-picrylhydrazyl), 
Trolox, sodium hydroxide, hydrochloric acid, hexane, 
methanol, ethanol, and ethyl acetate reagents was ob-
tained from Sigma Chemical Co. (USA).

Methods
Obtention of  the optimised germinated sorghum 

flour (OGSF). A 0.02% NaClO solution was employed 
to soak 1.2 kg of sorghum seeds for 23 h; after, the seeds 
were soaked for 1 h in  water. Once the sorghum 
seeds were hydrated, they were placed in germination 
trays (100 g per tray). The trays were collocated in the 
germinator (Percival  GR-36L; Perry, USA) with con-
trolled temperature and humidity (80–90%). The opti-
mal germination conditions used were those reported 
by  Salcido (2015): germination temperature (GT) and 
germination time (Gt) are 37 °C and 69 h. Seed germi-
nation was carried out under periods of light/darkness 
(50%/50%) during the daily germination time with white 
light [fluorescent tubes (16 W, 2 700 K); Tecnolite, 
Mexico]. Trays were watered once a day with a 0.02% 
NaClO solution throughout the experiment to keep the 
seed moist. The germinated sorghum seeds were sub-
jected to a drying process at 50 °C for 8 h in an oven 
(forced circulation; Carbolite, Spain) until reaching the 
water activity aw  =  0.6, they were ground (LM  3100; 
PerkinElmer, USA) (0.177 mm) and stored (4 °C).

Obtention of  the extruded germinated sorghum 
flours (EGSF). The methodology of León et al. (2021) 
was slightly modified for the extrusion of  the OGSF. 
Water was added to the OGSF to obtain a final mois-
ture content of 28% (278 mL per 1 kg). Extrusion was 
performed in a laboratory extruder (single-screw mod-
el 20 DN; CW Brabender Instruments, USA) equipped 
with a 19 mm diameter screw, length : diameter = 20 : 1, 
1 : 1  nominal compression ratio, and 3 mm die open-
ing. The  operating conditions of  the extruder were: 
extrusion temperature ET = 50–160 °C and screw ve-
locity SV = 50–240 rpm. The extruder was fed at a rate 
of 70 g·min–1; germinated sorghum extrudates were al-
lowed to stand at 25 °C, ground (LM 3100; PerkinElm-
er, USA) (0.177 mm) and stored at 4 °C.

Extraction of  phenolic compounds, antioxidant 
activity (AoxA) and total phenolic content (TPC). 
The methodology of Salas et al. (2018) for the extraction 
of  phenolic compounds was used; 10 mL of  ethanol-
water (80 : 20, v/v) was added to 0.5 g of sample defatted, 
shaken, the supernatant was recovered by centrifugation 
(3 000 × g for 10 min) (Sorvall RC5C; Thermo Fisher Sci-
entific, USA). For bound phenolic compounds, the precip-
itate was hydrolysed with 2 M NaOH (95 °C for 30 min). 
HCl was then used for neutralisation (25 °C for 60 min). 
The extraction was carried out with 10 mL of ethyl acetate 
(four times). Both extracts were evaporated to  dryness 
(Savant SC250 DDA Speed Vac Plus centrifugal evapora-
tor; Yamato, USA) and reconstituted in 2 mL of metha-
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nol. The extractions were performed in triplicate. Servín 
de la Mora et al. (2018) for the evaluation of AoxA [ABTS 
and DPPH: µmol TE (Trolox equivalent) per 100 g sam-
ple (DW, dry weight)] and TPC [mg  GAE  (gallic acid 
equivalents) per 100 g sample (DW)] were used.

In vitro protein digestibility (IVPD). A multienzy-
matic system was used to determine IVPD (Rathod and 
Annapure 2016).

Experimental design and extrusion process model-
ling and optimisation. A rotatable central composite 
experimental design was used. The  analysed factors 
were ET and SV, and the optimised response vari-
ables were AoxA, TPC, and IVPD. The design consisted 
of 13 treatments (Table 1), therefore statistics such as the 
mean and standard deviation were not reported. Sec-
ond-order polynomial models that establish the math-
ematical relationship between the process and response 
variables were adjusted using least squares regression, 
with the purpose of  obtaining  a  prediction model for 
each response studied and using them for the optimi-
sation of  the extrusion process. The  optimisation was 
done ensuring that AoxA, TPC, and IVPD had the high-
est possible values. The graphical method was used for 
optimisation (Design-Expert software, version 7.0.0).

Characterisation of  sorghum flours. Unprocessed 
sorghum flour (USF), optimised germinated sorghum 
flour (OGSF) and optimised extruded germinated sor-
ghum flour (OEGSF) were produced by triplicate with 
the purpose of  characterising them according to  the 
methodologies described as follows:

– Proximal composition. The  chemical composition 
of  sorghum flour was determined using the Asso-
ciation of Official Analytical Chemists (AOAC 2012) 
chemical methods.

– Hypoglycemic potential [half maximal inhibitory 
concentration (IC50), α-amylase and α-glucosidase 
inhibition activities]. The  inhibitory activity of  the 
free and bound phenolic extracts against α-amylase 
and α-glucosidase was determined following the 
methodology reported by León et al. (2021).

– Microbiological analysis of flours. A sample of each 
flour was taken and incorporated into a buffer solu-
tion of water with peptone at 0.1% w/v. The mixture 
was stirred and filtered (Whatman No.  1) to  ob-
tain 50 mL. Serial dilutions were made with a phos-
phate buffer solution. 1 mL  of  each dilution was 
placed in  3M  Petrifilm™  plates (TECHNOPATH, 
Ireland) for the enumeration and identification 
of Staphylococcus aureus [AFNOR method validated 
(3M-01/19–04/03)], Escherichia coli, total coliforms 
(official methods AOAC  998.08 and 991.14), and 
aerobic mesophiles (AOAC 990.12 official method). 
Molds and yeasts were grown in Petri dishes in Sabour 
and dextrose agar for quantification according to the 
Mexican Official Standards NOM-111-SSA1-1994. 
The  identification  of  Salmonella spp. was carried 
out by incubation in Selenite Cystine broth and Rap-
paport Vassiliadis broth (Merck, Germany) (37 °C 
for 24 h), and subsequent isolation in Hektoen enter-
ic agar and Xylose Lysine Deoxycholate agar (Merck, 
Germany) (37 °C for 24 h) (ISO 6579:2002).

– Statistic analysis. The  results of  the sorghum flour 
characterisation were analysed [analysis of  vari-
ance (ANOVA) and Tukey's multiple range test; 
P ≤ 0.05] using an unifactorial experimental design 
[factor: type of flour, with three levels: USF, OGSF, 
and OEGSF; these flours (3  treatments) were pro-
duced per triplicate and each replicate was evaluated 
for quality characteristics of  the flours (studied re-
sponses)]. Normal distribution and homoscedastic-
ity of data were verified through a residual analysis 
(Kolmogorov-Smirnov and Bartlett's tests; α = 0.05). 
The Minitab (version 21) statistical package was used.

RESULTS AND DISCUSSION

Prediction models for antioxidant activity, total 
phenolic content, and in  vitro protein digestibil-
ity of extruded germinated sorghum flours. The ex-
perimental values of  the response variables (AoxA, 
TPC, and IVPD) of  the EGSF; reflect data ranging 

Table 1. Experimental design* used to obtain different 
combinations of extrusion temperature and screw veloc-
ity for producing extruded germinated sorghum flours

Asssay**
Process variables

extrusion temperature 
(°C)

screw velocity
(rpm)

1 66 77
2 143 77
3 66 212
4 143 212
5 50 145
6 160 145
7 105 50
8 105 240
9–13 (replicates) 105 145

*Central composite rotatable design with two factors and 
five levels; **does not correspond to order of processing; 
rpm – revolutions per minute; bold – minimum and maxi-
mum values used
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6 412–7 770 µmol  TE per  100 g of  sample (DW), 
276–329 mg  GAE per  100 g of  sample (DW), and 
52–76%, respectively. The relationship between the re-
sponse variables (AoxA, TPC, and IVPD) and the pro-
cess variables (ET and SV) were obtained by regression, 
which presented a second-order prediction model that 
includes the linear, quadratic, and interaction terms 
of ET and SV, which were significant (P ≤ 0.05). Where-
as AoxA and TPC included the linear and quadratic 
terms. We clarify that the results shown below corre-
spond to  the estimated values of  the regression coef-
ficients (β's) significant (P ≤ 0.05) of the mathematical 
models using uncoded variables, as well as the param-
eters related to the significance of the models:

( )
( )

2

2

6 999 853.13 174.29

68.75 18.44

219.56

AoxA ET SV

ET SV ET

SV

= + + × + × +

−

+

+− × × ×

×

	 (1)

where: Pmodel = 0.0001, R2
adj = 0.9707, Plof = 0.3737, 

CV = 0.0104; AoxA – antioxidant activity; ET – extru-
sion temperature; SV –  screw velocity; Pmodel – prob-
ability of  model significance; R2

adj  –  adjusted 
coefficient of determination; Plof – probability of testing 
for lack of model fit; CV – coefficient of variance.

( )2
44.59 2.63 1.32

1.04

TPC ET ET SV

ET

= + + × − × × +

+ ×
	 (2)

where: Pmodel =  0.0001, R2
adj =  0.9007, Plof =  0.3792, 

CV = 0.0175; TPC – total phenolic compounds.

( )
( )

2

2

74.69 1.03 8.46

10.55

IVPD SV ET

SV

= + − × −

− ×

+×
	 (3)

where: Pmodel =  0.0001, R2
adj =  0.9719, Plof =  0.2404, 

CV = 0.0262; IVPD – in vitro protein digestibility.

According to  Salas et  al.  (2018), the adequacy 
tests of  a  square model are the model is  significant 
(P  ≤  0.05), a  non-significant lack of  fit (P  >  0.05), 
a  high adjusted quadratic coefficient of  determi-
nation (adjusted R2  ≥  0.8), and a  small coefficient 
of  variance (CV  <  0.1). The  results obtained in  the 
presented adequate statistical parameters, as  can 
be  seen above. Statistical assumptions (normality, 
constant variance, independence, randomness) were 
also verified through residual analysis, obtaining a sat-

isfactory fulfillment. Figure  1A  shows that the AoxA 
of EGSF increased with higher ET and SV, reaching the 
highest value [8 150 µmol TE per 100 g sample (DW)] 
at 160 °C and 240 rpm. On the other hand, the TPC in-
creased with high ET and low SV, reaching a  maxi-
mum value [334 mg  GAE per  100 g sample (DW)] 
at  160 °C  for  50 rpm (Figure  1B). In  Figure  1C it  can 
be seen that at medium temperatures and speeds, the 
IVPD increases, reaching maximum values of  75% 
at 105 °C for 145 rpm.

Optimisation. A  contour plot overlay was used 
to obtain the optimal combination of process variables 
(Figure  1A–C) and produce the OEGSF. As  shown 
in Figure 1D, the best process conditions (ET = 137 °C 
and SV =  134 rpm) with the highest values of  AoxA, 
TPC, and IVPD are located at the centre point of the 
optimisation region. With the optimal extrusion con-
ditions and the prediction models, the predicted val-
ues for the variables were obtained. The  production 
of  OEGSF using the optimal combination of  process 
variables was performed in  triplicate, obtaining ex-
perimental values of  AoxA, TPC, and IVPD similar 
to those predicted.

Chemical composition and nutritional proper-
ties of sorghum flours. After optimised germination-
extrusion, there was a significant increase in sorghum 
protein content (12%  vs.  14%). This increase can 
be attributed; to  the reduction of nutrients (carbohy-
drates) through the respiration process in germination 
(Salas et al. 2018).

Zhu et  al.  (2017) evaluated the effect of  germina-
tion-extrusion on  the nutritional and physicochemi-
cal properties of  wheat tortillas. They reported that 
the germination process caused a significant increase 
(P  <  0.05) in  protein content; however, extrusion did 
not show a significant difference compared to germi-
nated wheat flour.

Regarding the lipid content of  sorghum, a decrease 
in  germination-extrusion was observed (3%  vs.  1%). 
This decrease can be  attributed to  the use of  lipids 
as a source of energy for the development of seedlings 
(germination), which are used for various metabolic 
activities (Salas et  al.  2018); furthermore, the condi-
tions of the extrusion process (high temperatures and 
speeds, cutting strength and humidity) can cause the 
formation of lipid complexes (Félix et al. 2021).

On the other hand, the application of both processes 
increased total dietary fibre (6% vs. 9%). Fibre content 
changes during germination are associated with in-
creased levels of cellulose, hemicellulose, and polysac-
charides (Hübner and Arendt 2013). Gong et al. (2018) 
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reported similar results when subjecting whole corn 
grains to  germination-extrusion, observing increases 
in the content of soluble dietary fibre.

IVPD of  sorghum flour increased (58% vs. 72%) af-
ter germination-extrusion; this is  attributed to  the 
reduction of  antinutritional factors due to  both pro-
cesses (Albarracín et al. 2015) and the denaturalisation 
of proteins due to extrusion (Félix et al. 2021). Albar-
racín et al. (2019) studied the effect of germination-ex-
trusion processes on protein digestibility in rice grains; 
observed an  increase when applying the germination 

bioprocess and a  decrease when applying the extru-
sion process.

Phenolic content and antioxidant activity (AoxA) 
of  sorghum flours. The germination increased the 
TPC  contents in  sorghum (Table  2). Xu  et  al.  (2020) 
reported that germination begins with the hydration 
of  seeds, increasing respiratory activity and the novo 
synthesis of gibberellic acids in the germ; functioning 
as  a  molecular signal that causes the production and 
secretion of  enzymes in  the endosperm that degrade 
macromolecules, which participate in  the respira-

Figure 1. Contour plots showing the effect of extrusion temperature and screw velocity – (A) antioxidant activity, 
(B) total phenolic compounds, and (C) in vitro protein digestibility; (D) region of the optimal combination of pro-
cess variables

ET – extrusion temperature; SV – screw velocity; AoxA – antioxidant activity; TPC – total phenolic compounds; 
IVPD – in vitro protein digestibility; rpm – revolutions per minute; TE – Trolox equivalents; GAE – gallic acid equivalents
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tion and synthesis of  phenolic compounds. However, 
extrusion did not significantly modify the TPC  con-
tent in  germinated sorghum. Albarracín et  al.  (2019) 
reported a  significant improvement in  the content 
of  TPC  during the germination of  brown rice; when 
applying the extrusion process, they did not obtain 
significant changes in  the content of  bound phenolic 
compounds. Different trends have been observed 
in  the content of phenolic compounds due to  the ef-
fect of the extrusion process: decreases, increases and, 
sometimes, without significant changes (Albarracín 
et al. 2015; Gong et al. 2018).

In general, the AoxA of sorghum seeds increased af-
ter germination for phytochemicals (Table  2). When 
the OGSF  was extruded, a  decrease in  AoxA  values 
was observed. However, the AoxA values of extruded 
germinated grain are higher than those of unprocessed 
grain. Albarracín et al. (2015) reported that brown rice 
germination increased its AoxA, evaluated by  ABTS, 
by 30% and that extrusion, applied immediately, caused 
another increase in AoxA. This increase has been re-
lated with other compounds that are formed during 
thermal processes, such as the Maillard reaction prod-

ucts (Chavarín et al. 2019). However, in this research, 
colourimetric methods were used to  quantify the 
content of  TPC and AoxA; therefore, there are com-
pounds and reactions between reagents that generate 
colour and interfere with the measurement.

Hypoglycemic potential (IC50) of  sorghum flour. 
Table  2  shows the hypoglycemic potential values 
evaluated in phenolic extracts of sorghum flour. Phe-
nolic extracts from OGSF had better hypoglycemic 
potential (lower IC50) than those from OEGSF for free 
phenols; in  the bound phenolic extracts the IC50  val-
ues for α-amylase were similar for OGSF and OEGSF, 
meanwhile for α-glucosidase the IC50 of  the phenolic 
extracts of OEGSF was better than OGSF.

The improvement in  the hypoglycemic potential 
when applying the germination process may be  due 
to  the synthesis of  new compounds, as  well as  the 
transformation of  already existing compounds, pre-
senting a  correlation between antioxidant activity 
and inhibitors of α-amylase and α-glucosidase (Gong 
et  al.  2018). Regarding the extrusion process, an  im-
provement in  the hypoglycemic potential can be  at-
tributed to  the release of  phenolic compounds and 

Table 2. Antioxidant activity, total phenolic content and hypoglycemic potentials of sorghum flours

Property USF OGSF OEGSF
Antioxidant activity ABTSc

Free phytochemicals 2 070 ± 46C 5 330 ± 108A 4 196 ± 117B

Bound phytochemicals 2 202 ± 175B 3 080 ± 160A 3 320 ± 219A

Total phytochemicals 4 273 ± 129C 8 410 ± 256A 7 517 ± 274B

Antioxidant activity DPPHc

Free phytochemicals 355.03 ± 19C 710 ± 71A 604 ± 24B

Bound phytochemicals 403.28 ± 6C 668 ± 54A 601 ± 21B

Total phytochemicals 758.31 ± 15C 1 378 ± 108A 1 204 ± 26B

Phenolic contentd

Free phenolics 109.56 ± 2B 136 ± 3A 140 ± 1A

Bound phenolics 130.85 ± 3B 168 ± 2A 169 ± 7A

Total phenolics 240.42 ± 2B 304 ± 4A 310 ± 2A

Hypoglycemic potential (IC50)e

α-amylase inhibition
free phenolics 223.10 ± 1A 84 ± 1C 157 ± 2B

bound phenolics ND 47 ± 1A 45 ± 1A

α-glucosidase inhibition
free phenolics ND 138 ± 1B 262 ± 1A 

bound phenolics ND ND 42 ± 1A

A–CMeans with different superscripts in the same row are different (Tukey, P ≤ 0.05); cµmol Trolox equivalents (TE) 
per 100 g sample (DW, dry weight); dmg gallic acid equivalents (GAE) per 100 g sample (DW); emg extract per mL; data are 
expressed as means ± standard deviation; ABTS – 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); n = 3 replicates; 
DPPH –2,2-diphenyl-1-picrylhydrazyl; IC50 – half maximal inhibitory concentration; USF – unprocessed sorghum flour; 
OGSF – optimised germinated sorghum flour; OEGSF – optimised extruded germinated sorghum flour; ND – not detected
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the formation of Maillard reaction products with hy-
poglycemic potential due to the conditions of the ex-
trusion process. Phenolic compounds can modify the 
enzymatic activity of α-amylase by binding to its reac-
tive site. Phenolic compounds can bind to the enzyme 
α-amylase through hydrogen bonds through the galloyl 
and hydroxyl groups and the polar groups of  the en-
zyme. In this way, phenolic compounds can modify the 
rate of reaction of the enzyme α-amylase and affect its 
hypoglycemic effect (León et al. 2021).

Synthetic inhibitors such as acarbose and miglitol are 
currently used to suppress the enzyme α-glucosidase; 
however, the consumption of  these drugs generates 
side effects such as diarrhea, abdominal pain; for this 
reason, there is an interest in natural sources of enzyme 
inhibitors of  α-amylase and α-glucosidase enzymes 
(Oyedemi et al. 2017).

Microbiological stability of  sorghum flour. The 
germination bioprocess increased (P  <  0.05) the mi-
crobial load compared to  unprocessed sorghum. 
All  the samples registered values outside the sanitary 
specification (NOM  147-SSA1-1994) (Figure  2). This 
increase may be due to the conditions of the germina-
tion process (humidity, temperature, pH) that favour 
the growth of bacteria inside or outside the seed (Kel-
ler et al. 2018).

Staphylococcus aureus, Escherichia coli, and Salmo-
nella were not detected in the unprocessed and opti-

mised germinated sorghum flours (data not shown). 
Cava et al. (2009) obtained similar results when count-
ing aerobic bacteria, total coliforms, E. coli, yeasts, and 
molds in germinated and non-germinated seeds of two 
varieties of beans; they also investigated the presence 
of  Salmonella, Listeria monocytogenes, and E.  coli; 
concluding that germination significantly increased 
the population of aerobic mesophiles, total coliforms, 
molds, and yeasts of white and black varieties of beans 
concerning non-germinated seeds. However, the pres-
ence of  Salmonella, L.  monocytogenes, or  E.  coli was 
not detected in the germinated seeds of beans.

The extrusion process, applied in  combination, 
caused a reduction of microorganisms (P > 0.05) com-
pared to the OGSF. These values comply with the max-
imum limit allowed by the NOM-147-SSA1-1996. This 
reduction of  microorganisms is  related to  their inac-
tivation or  elimination due to  the thermal treatment 
used in  the extrusion process (Anderson et al. 2017). 
Likewise, in OEGSF the presence of S. aureus, E. coli, 
and Salmonella was not detected. Ohtsubo et al. (2005) 
observed similar results when studying the effect 
of  applying processes (germination-extrusion) in  rice 
on E. coli; obtaining values of 3.8 × 103 CFU·g–1 for un-
processed rice, 9.6 × 105 CFU·g–1 corresponding to ger-
minated  rice and absence of  colonies (<  10 CFU·g–1) 
in  extruded germinated rice (CFU  –  colony-form-
ing unit).

Figure 2. Total coliforms, aerobic mesophiles, and molds in sorghum flours
A,Bmeans with different letters for the same type of microorganism present statistical differences (Tukey, P ≤ 0.05); data 
are expressed as means; n = 4 replicates; USF – unprocessed sorghum flour; OGSF – optimised germinated sorghum 
flour; OEGSF – optimised extruded germinated sorghum flour
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CONCLUSION

The best combination of  extrusion process vari-
ables, ET/SV  for producing OEGSF with maximum 
values of  antioxidant activity, total phenolic content, 
and in vitro protein digestibility was ET = 137 °C and 
SV  =  134 rpm. The  combination of  optimised pro-
cesses (germination-extrusion) is an effective strategy 
to  improve protein digestibility, phenolic compound 
content, and hypoglycemic potential. In addition, it in-
creased the antioxidant activity and decreased the to-
tal microbial count. OEGSF could be used as a natural 
source of dietary fibre, protein, and antioxidants in the 
development of  new functional foods and beverages. 
The results of  this research can serve to promote the 
use of  sorghum for human consumption, given that 
currently its mayor use is as fodder for livestock.
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