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With the rapid development of  the economy and 
society, and the acceleration of  people's lifestyles, 
minced  meat products (such as  lunch meat, sausag-
es,  and meatballs) are becoming increasingly popu-
lar due to  their convenience and high nutritional 
value. Consequently, consumer demands for the qual-
ity of  minced meat products are also rising. Minced 
meat products, consisting of lean meat, fat, water, salt, 
and other additives, form a complex dispersed system 
(Ye et al. 2024). However, during their shelf life, these 
products often experience quality deterioration, which 

manifests like juice loss, surface drying, darkening 
of the meat filling, incomplete product integrity, cloudy 
cooking broth, frost on the product surface, develop-
ment of  an  unpleasant rancid taste, increased losses 
upon thawing and cooking, and a  decline in  texture, 
hardness, elasticity, cohesiveness, and chewability. This 
significantly affects the consumer purchasing power 
and hinders the industrial, nutritional, and specialised 
development of minced meat products.

The formation of  minced meat product quality 
is  a  process in  which muscle proteins denature and 
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coagulate to  form a  three-dimensional gel network 
structure (Zhu et al. 2021). The quality of minced meat 
products depends on  the functional characteristics 
of  muscle proteins, which directly influence the tis-
sue state of the products, their water-holding capacity, 
emulsification, adhesiveness, and yield.

Protein oxidation is one of the most common chemi-
cal modifications of  proteins. It  involves the covalent 
modification of  proteins through direct or  indirect 
reactions with reactive oxygen species (ROS) and 
stress-related secondary products, leading to  changes 
in  the secondary and tertiary structures of  proteins, 
thereby affecting their function and activity (Zhang 
et al. 2013). Excessive oxidation of myosin, particularly, 
alters protein conformation and secondary structures, 
significantly affecting processing characteristics and 
edible quality (Domínguez et al. 2021). Protein oxida-
tion also affects the recognition of specific sites within 
protein structures by  proteases, reducing enzymatic 
digestion efficiency and digestibility (Fu  et  al.  2019). 
Moreover, protein oxidation may increase cytotoxicity 
and mutagenicity, as modifications of L-phenylalanine 
by  hydroxyl radicals can produce cytotoxic tyrosine, 
potentially causing protein synthesis disorders and 
triggering diseases (Gurer-Orhan et al. 2006). Protein 
oxidation directly leads to side-chain modifications, un-
folding of structures, reduction in protein thiol content, 
increased carbonylation, protein crosslinking (disul-
phide and dityrosine bonding), reduced solubility, and 
decreased digestibility and functionality of proteins.

Numerous studies have demonstrated the impact 
of  oxidation on  protein structure (Lu et  al.  2018; Jia 
et  al.  2019). It  has been found that mild oxidation 
can cause partial unfolding of  myosin structure and 
increase the number of  active sites for gel formation 
(Jiang et  al.  2016). A  2019 study by  Bhoke Marwa 
Nyaisaba examined the effects of  hydroxyl radicals 
on the properties of myofibrillar proteins in fish meat. 
The  study revealed that at  higher concentrations 
of H2O2, total thiol groups were significantly reduced 
and carbonyl content increased; moderate concen-
trations (1 mmol·L–1) of  H2O2 enhanced the water-
holding capacity and structural characteristics of  the 
gel, while lower (0.1 mmol·L–1) and higher (5, 10, and 
20 mmol·L–1) concentrations significantly reduced the 
water-holding capacity of  the gel. Furthermore, sodi-
um dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) and microscopic structural results con-
firmed that oxidation led to aggregation and denatura-
tion of  myofibrillar proteins, causing changes in  the 
gelation structure of  myofibrillar proteins; oxidation 

of myofibrillar proteins indicated that at moderate con-
centrations of oxidants, the structural properties of the 
heat gel were slightly improved (Nyaisaba et al. 2019). 
Therefore, controlling the degree of protein oxidation 
is crucial for controlling the quality of minced meat.

Mutton is one of the most popular foods worldwide, 
with China leading global production. Particularly, the 
northwestern region of China is a major source of high-
quality mutton, known for its excellent water quality, 
abundant feed, and diverse animal breeds, resulting 
in  juicy, tender, and flavourful meat that is renowned 
globally (Brand et al. 2018; Liu et al. 2019). Compared 
to other meat proteins such as pork and beef, mutton 
proteins exhibit significant differences: they are rich 
in branched-chain and other essential amino acids cru-
cial for muscle synthesis and repair, and have a  high 
biological utilisation rate. The  unsaturated fatty acid 
content in  mutton, especially ω-3 and ω-6 fatty ac-
ids, is relatively high, which benefits the cardiovascu-
lar health and also influences the oxidative sensitivity 
of mutton proteins.

Myofibrillar proteins (MPs) in  mutton, account-
ing for 50–60% of  the total protein content in  meat, 
play a vital role in the quality of meat products (Guo 
et  al.  2019). Myosin, a  significant component of  my-
ofibrillar proteins, constitutes 50%~55% of  myofibril-
lar proteins and one-third of the total protein in meat, 
participating in  the formation process of  meat gels 
and significantly influencing meat processing (Bayar-
saikhan et al. 2019, Deng et al. 2021). Although nutri-
tionally rich, mutton has poor protein stability; during 
storage, it is susceptible to oxidation by hydroxyl radi-
cals due to processing and environmental factors. This 
oxidation gradually weakens gel structures, causing 
varying degrees of  quality deterioration in  minced 
meat as the protein oxidation process progresses (Tong 
et al. 2018). However, the causes of quality deteriora-
tion require further exploration; thus, this study uses 
mutton myosin as the subject, oxidising proteins with 
different concentrations of oxidants to investigate the 
mechanisms of oxidation.

MATERIAL AND METHODS

Fresh tenderloin (Tan Sheep, slaughtered with-
in  12 h) from a  vegetable market near Lanzhou Uni-
versity of Technology, Gansu Province. It was sealed, 
packed, and transported to  the laboratory in  an  in-
sulated container with ice packs. All  other chemical 
reagents used were of analytical grade, and the experi-
ments were conducted using distilled water.
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Extraction and purification of  myosin. Adapt-
ing the method proposed by  Lei et  al.  (2022), fresh 
Tan  Sheep tenderloin, devoid of  fascia and fat, was 
chilled at  4 °C for 30 min, then minced using a  meat 
grinder for 5 min. To this, thrice the volume of chilled 
extract  A  [0.5 mol·L–1  KCl, 0.1 mol·L–1 KH2PO4, 
50 mmol·L–1 K2HPO4, 5.0 mmol·L–1 ethylenediamine 
tetraacetic acid (EDTA)-2Na, 4.0 mmol·L–1 sodium 
pyrophosphate, pH  6.5] was added and blended. 
The  mixture was then homogenised in  an  ice bath 
at  5 000  ×  g  for  5 min, followed by  centrifugation 
(8 000  ×  g, 10 min, 4 °C) and filtration. The  superna-
tant was diluted with a  tenfold volume of pre-cooled 
water, mixed, and left to  settle for 4 h  at  4 °C be-
fore removing the supernatant and centrifuging 
the precipitate. Subsequently, thrice the volume 
of  extract  B  (0.3 mol·L–1  KCl, 20 mmol·L–1 K2HPO4, 
20 mmol·L–1 KH2PO4, pH 7.0) was added to  the pre-
cipitate, stirred for 20 min, centrifuged at 8 000 × g for 
10 min at  4 °C, and the supernatant was combined 
with a  tenfold volume of  pre-cooled water. After an-
other centrifugation, the precipitate  was dissolved 
in an equivalent volume of dialysate (0.6 mol·L–1 KCl, 
20 mmol·L–1 K2HPO4, 20 mmol·L–1 KH2PO4, pH 7.5). 
Dialysis was performed in a dialysis bag (10 000 Da) for 
24 h to obtain the myosin solution, followed by a final 
centrifugation (10 000 × g, 10 min, 4 °C) to remove the 
supernatant. Protein content was quantified using 
the  biuret method, and myosin purity was evaluated 
using SDS-PAGE.

Oxidation of  myosin. Following a  slight modifica-
tion of the method (Zhang et al. 2020), myosin concen-
tration was adjusted to 20 mg·mL–1 using a phosphate 
buffer (50 mmol·L–1 KH2PO4, 50 mmol·L–1 K2HPO4, 
0.6 mol·L–1 KCl, pH 6.5). Equal volumes of myosin so-
lution and oxidation system [comprising 0.1 mmol·L–1 
ferric chloride, 1 mmol·L–1 ascorbic acid, and varying 
H2O2 concentrations (0, 0.5, 1, 5, 10, 20 mmol·L–1)] 
were mixed. Oxidation proceeded in darkness at 4 °C 
for 24 h, halted by adding 1 mmol·L–1 EDTA. A dou-
ble volume of  phosphate buffer was added, followed 
by centrifugation (8 000 × g, 4 °C, 10 min). The precip-
itate was washed twice with the same buffer and 
centrifuged under identical conditions. Finally, the pre-
cipitate was redissolved in  phosphate-buffered saline 
(PBS, 20 mmol·L–1 KH2PO4, 20 mmol·L–1 K2HPO4, 
0.6 mol·L–1 KCl, pH 6.5) buffer and stored at 4 °C.

Determination of  carbonyl content. Adapt-
ing the method (Chen et  al.  2023), the myosin con-
centration was adjusted to  5 mg·mL–1 in  PBS buffer. 
In a 5 mL centrifuge tube, 0.8 mL of myosin solution 

was combined with 1 600 µL of  2 mol·L–1 HCl solu-
tion and reacted at room temperature for 30 min. Sub-
sequently, 800 µL of  trichloroacetic acid (0.4 g·mL–1) 
was added, followed by  centrifugation to  discard the 
precipitate. The  precipitate was washed thrice, then 
redissolved in 3 mL of phosphate buffer. After resting 
for 12 h, absorbance at 370 nm was measured. Carbon-
yl content was calculated using the molar extinction 
coefficient (22 000 M−1·cm−1) as shown in Equation 1.

( )–1 6   nmol·m
22

g 10
000

ACarbonyl group content
C

=
×

× 	 (1)

where: A – absorbance at 370 nm; C – concentration 
of the protein sample (mg·mL–1).

Determination of  sulfhydryl content. Adapt-
ing the method from Xinrong et al. (2023) with slight 
modifications, the myosin concentration was adjusted 
to  5 mg·mL–1 in  PBS  buffer. We  mixed 1 mL  of  this 
protein solution with 9 mL of  phosphate buffer. 
In a test tube, 3 mL of this diluent and 0.4 mL of 0.1% 
5,5'-dithiobis(2-nitrobenzoic acid) were combined and 
reacted at 40 °C in the dark for 30 min. After cooling 
to  room temperature, the absorbance at  412 nm was 
measured. The  sulfhydryl content was calculated us-
ing the molar extinction coefficient (13 600 M−1·cm−1), 
as illustrated in Equation 2.

( )
5

–1n
10

   mo m
1 6

l· g
3

A
Sulfhydryl group content

C

×
=

×
	 (2)

where: A – absorbance at 412 nm.

Determination of  surface hydrophobicity. Fol-
lowing minor modifications to  the method (Yantao 
et  al.  2023), the myosin concentration was adjusted 
to 5 mg·mL–1 in PBS buffer. To a 2 mL centrifuge tube, 
we  added 1 mL of  the sample solution (5 mg·mL–1) 
and 200 µL of  bromophenol blue (BPB) solution 
(1 mg·mL–1), mixing for 10 min. After centrifugation, 
absorbance was measured at  595 nm with a  10-fold 
dilution. Surface hydrophobicity was determined us-
ing Equation 3.

( ) 0 1

0

BPB  g 0 2 0
A A

combining weight
A

−
µ = × 	 (3)

where: BPB – bromophenol blue; A0 – absorbance 
of the blank sample at 595 nm; A1 – absorbance of the 
sample at 595 nm.
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Determination of  solubility. Adapting the meth-
odology from Ge  et  al.  (2022), myosin samples were 
concentrated to 2.5 mg·mL–1 in PBS buffer, incubated 
at 4 °C for 1 h, and then centrifuged (8 000 × g, 4 °C, 
20 min) to  separate the supernatants. The  solubility 
was evaluated by comparing the concentration of myo-
sin solution before and after centrifugation (C0 and C1), 
as described in Equation 4.

( ) 1

0

 % 100
C

Solubility
C

= × 	 (4)

where: C0 – concentration of  myosin solution before 
centrifugation; C1 – concentration of myosin solution 
after centrifugation.

Determination of  turbidity. Following the proce-
dure by  Shui et  al.  (2024), the myosin concentration 
in  PBS buffer was adjusted to  1 mg·mL–1. The  sam-
ple solution (5 mL) was heated to 50 °C and 80 °C for 
30 min each. After cooling and resting for 1 h, the solu-
tion absorbance at 600 nm was measured to determine 
turbidity, which is given as A600 nm.

Determination of  foaming and foam stability. 
In  accordance with the method outlined by  Haihua 
et  al.  (2023), the myosin concentration was adjust-
ed to  5 mg·mL–1 with PBS buffer. A  10 mL aliquot 
of  the solution was placed in  a  50 mL plastic meas-
uring cylinder [initial volume V0  (mL)] and agitat-
ed at  2 000  ×  g  at  25 °C for 1 min. The  immediate 
foam  volume was noted as  V1  (mL). After an  hour, 
the foam volume [Vt (mL)] was measured again. Foam-
ing capacity (Fc) and foam stability (Fs) were calculated 
using Equations 5 and 6, respectively:

( ) 1 0

0

% 100 c

V V
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V
×

−
= 	 (5)
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1
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s

V
F

V
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where: Fc – foaming capacity; V0 – initial volume (mL); 
V1 – immediate foam volume (mL); Vt – foam volume 
(mL); Fs – foam stability.

Determination of emulsifying properties. Follow-
ing the method proposed by Wu et al. (2023), the myo-
sin concentration was set to 5 mg·mL–1 in PBS buffer. 
In a 50 mL centrifuge tube, 2.0 mL of soybean oil and 
8.0 mL of  the sample solution were combined, thor-
oughly mixed, and then 50 µL of the emulsion, extracted 

0.5 cm above the tube base, was added to 5 mL of 0.1% 
SDS solution. The mixture was shaken and the absorb-
ance (A1) was measured at  500 nm. After a  10-min 
stand, the procedure was repeated to  determine the 
absorbance (A2), using 0.1% SDS solution as the blank 
control. The emulsifying activity index (EAI) and emul-
sion stability index (ESI) were calculated using Equa-
tions 7 and 8, respectively:
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where: EAI – emulsifying activity index; ESI – emul-
sion stability index; ρ – mass concentration of  MP 
(g·mL–1); φ  –  volume fraction of  oil phase (20%); 
A1 and A2 – absorbance of the emulsion at 0 and 10 min, 
respectively.

Sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis. Adapting the technique from Shen 
Hui et  al.  (Shen et  al.  2020), for SDS-PAGE analysis 
5% stacking gel and 12% resolving gel were used. Each 
lane was loaded with 10 µL of  1 mg·mL–1 sample so-
lution. The electrophoresis was conducted at 75 V for 
stacking and 120 V for resolving. After electrophore-
sis, the gel was stained with Coomassie brilliant blue, 
destained, and then imaged using a  gel documenta-
tion system.

Fourier transformed infrared spectroscopy. 
Following the procedure described by  Juanjuan 
et  al.  (2022), a  1 mg lyophilised protein sample was 
blended with 100 mg  KBr, ground, and compressed 
into pellets. The  fourier transformed infrared spec-
troscopy (FTIR) spectra were recorded at  room tem-
perature across a range of 400 to 4 000 cm–1. Peak Fit 
software (version 4.0), which uses a Gaussian peak fit-
ting algorithm, was used to  investigate the secondary 
structure of myosins.

Data analysis. Each experimental condition was rep-
licated thrice, with results presented as mean ± stand-
ard deviation. GraphPad Prism software (version  8) 
facilitated the analysis of variance and significance test-
ing, where P < 0.05 was considered statistically signifi-
cant. Omnic (version 9.2) and Peak Fit (version 4.12) 
were used for secondary structure analysis, while 
GraphPad Prism (version  8) supported correlation 
analysis and graphical presentations.
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RESULTS AND DISCUSSION

Effects of  different oxidation levels on  the car-
bonyl content of mutton myosin. Protein carbonyls, 
as primary oxidation products in meat during storage, 
signify crucial chemical modifications in oxidised pro-
teins (Christina et  al.  2023). As  depicted in  Figure  1, 
the carbonyl content escalates markedly with increas-
ing H2O2 concentration (P  <  0.05), which indicates 
increased oxidation. The control group exhibited a car-
bonyl content of 1.982 nmol·mg–1; when the concentra-
tion of H2O2 was 5, 10, and 20 mmol·L–1, the carbonyl 
content was 3.244, 4.292, and 4.711 nmol·mg–1, respec-
tively. The  concentration of  H2O2 increased signifi-
cantly at  10 mmol·L–1, which was 2.165  times higher 
than that of the control group. When the concentration 
of H2O2 was 20 mmol·L–1, it increased 2.376 times com-
pared with that of the control group, and the increase 
was slower; it was estimated that when the concentra-
tion of H2O2 was greater than 10 mmol·L–1, the protein 
was almost completely oxidised. Reactive oxygen spe-
cies target peptide bonds or  side chain groups, caus-
ing oxidation and formation of  carbonyl derivatives 
(Márquez-Lázaro et al. 2022, Ramadhan et al. 2024).

Effects of  different oxidation levels on  the sulf-
hydryl content in  mutton myosin. The  reduction 
in  sulfhydryl groups is  a  prevalent characteristic 
of  protein alterations under oxidative stress (Leped-

da and Formato  2020). Figure  2 illustrates a  signifi-
cant decline in  sulfhydryl content with increasing 
H2O2  concentration (P  <  0.05). When the concentra-
tion of H2O2 was 5, 10, and 20 mmol·L–1, the sulfhy-
dryl content was 42.25, 39.69, and 31.19 nmol·mg–1, 
respectively. When the  concentration of  H2O2 in-
creased to  20 mmol·L–1,  the sulfhydryl content 
decreased to 31.19 nmol·mg–1, which was 37.02% low-
er than that of the control group. This trend also indi-
cates that the degree of protein oxidation is deepening, 
which corresponds to  the trend of  carbonyl change. 
This reduction occurs as myosin sulfhydryl groups are 
vulnerable to attack by reactive oxygen species, leading 
to  their conversion into disulphide bonds, sulphenic 
acid, sulphonic acid, or nitrosothiol formation through 
interaction with nitric oxide. Additionally, the decline 
in  sulfhydryl content may result from the extensive 
exposure of  internal sulfhydryl groups (-SH) in  myo-
sin due to  OH  radical  oxidation and the subsequent 
capture of  hydrogen atoms from sulphur-containing 
amino acid (cysteine) residues (Soladoye et  al.  2015, 
Ramadhan et al. 2024).

Effects of  different degrees of  oxidation on  the 
surface hydrophobicity of  mutton myosin. Sur-
face hydrophobicity, indicating the presence of  hy-
drophobic amino acids on the protein surface, serves 
as  a  marker for protein conformational changes 
(Cheng et al. 2023). Figure 3 demonstrates that the my-

Figure 1. Effect of hydroxyl radical oxidation on carbonyl 
content in mutton myosin

a–f – different letters indicate significant difference 
in H2O2 concentration (P < 0.05)

Figure 2. Changes in sulfhydryl content in mutton myosin 
after hydroxyl radical oxidation

a–f – different letters indicate significant difference 
in H2O2 concentration (P < 0.05)
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osin surface hydrophobicity increases with the rising 
H2O2 concentration (P  <  0.05). In  the control group, 
the bromophenol blue binding amount was 43.65 µg, 
which surged to 69.46 µg at 20 mmol·L–1 H2O2, which 
was a  59.13% increase compared to  the control. This 
rise may stem from alterations in  protein structure 
and conformation under intense oxidation, exposing 
numerous hydrophobic groups and elevating the sur-
face hydrophobicity. It could also relate to protein ag-
gregation, which might shield unfolding proteins under 
strong oxidation, with protein refolding due to aggre-
gation and multimer formation further augmenting the 
surface hydrophobicity (Xu et al. 2020).

Effects of  different degrees of  oxidation on  the 
solubility of  mutton myosin. Solubility is  indica-
tive of protein aggregation and crosslinking levels and 
serves as a key parameter in assessing protein charac-
teristics (Malik et  al.  2017). As  depicted in  Figure  4, 
myosin solubility diminishes markedly with an  in-
crease in H2O2 concentration (P < 0.05). The solubility 
dropped from 48.64% to  29.10% as  H2O2 concentra-
tion escalated from 0 mmol·L–1 to 20 mmol·L–1, which 
was a 19.54% reduction compared to the control. This 
decrease after oxidation treatment likely stems from 
alterations in protein molecule conformation, leading 
to  the formation of  insoluble aggregates and the cor-
relation between higher oxidation and lower solubility. 
Additionally, extensive oxidation may cause protein 

denaturation and precipitation, thereby diminishing 
solubility. Insoluble aggregates emerge from the co-
valent crosslinking of protein molecules, which com-
promises solubility. The  interaction of  proteins with 
peroxides alters the protein energy state, inducing 
denaturation and ultimately reducing solubility (Zhou 
and Yang 2020).

Effects of  different degrees of  oxidation on  the 
turbidity of  mutton myosin. Turbidity measures 
the  obstruction of  light transmission through a  solu-
tion and is used to gauge the protein aggregation (Kong 
et al. 2023), indirectly reflecting solubility changes. This 
study used the absorbance at 600 nm as a turbidity met-
ric. Figure 5 illustrates a significant increase in turbid-
ity alongside the rising H2O2 concentration (P < 0.05). 
This effect is attributed to oxidation-induced crosslink-
ing and aggregation of  protein molecules, decreasing 
solubility and enhancing turbidity. The  turbidity out-
comes align with solubility observations, underscoring 
that oxidation promotes the protein molecule aggrega-
tion, leading to reduced solubility.

Effects of  different oxidation degrees on  foam-
ing capacity and foam stability of  mutton myo-
sin. The  foaming capacity of  proteins contributes 
to the airy structure and pleasant taste of food, which 
is  associated with the content of  soluble protein 
and its stability in  solution (Jin et  al.  2022). As  de-
picted in  Figure  6A, the foaming property of  the 

Figure 3. Changes in the surface hydrophobicity of mutton 
myosin after oxidation by hydroxyl radicals

a–f – different letters indicate significant difference 
in H2O2 concentration (P < 0.05); BPB – bromophenol blue

Figure 4. Changes in the solubility of mutton myosin after 
hydroxyl radical oxidation

a–e – different letters indicate significant difference 
in H2O2 concentration (P < 0.05)
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control group  was  17%,  and  when the concentra-
tion of  H2O2  was 5 mmol·L–1  and 20 mmol·L–1, the 
foaming property was  48% and 38%, respectively. 
The  foaming capacity of  myosin initially increased 
and then it  decreased, and the foaming property 
reached the maximum value when the H2O2 concen-
tration was 5 mmol·L–1; the foaming performance be-
gan to decrease as the H2O2 concentration continued 
to increase, but it was still higher than that of the con-
trol group, so  it was obvious that oxidation was ben-
eficial  to  the foaming property of myosin. This could 
be due to hydroxyl radical oxidation causing the partial 
unfolding of protein molecules, exposing internal hy-

drophobic residues, and facilitating rapid adsorption 
at the two-phase interface, thereby enhancing foaming. 
However, as  oxidation progresses, sulfhydryl groups 
oxidise to form disulphide bonds, and larger crosslinks 
create insoluble aggregates like protein polymers, 
increasing the interfacial tension. Additionally, reduced 
solubility diminishes the available protein content 
for foam formation, leading to  decreased foamability 
(Duan et al. 2018). The myosin foam stability showed 
minor changes (Figure 6B), with oxidation not signifi-
cantly affecting it, maintaining over 80% stability.

Effects of different degrees of oxidation on emul-
sifying properties of  mutton myosin. Emulsifying 

Figure 6. Changes in myosin (A) foaming capacity and (B) foam stability after oxidation

a–f – different letters indicate significant difference in H2O2 concentration (P < 0.05); Fc – foaming capacity; Fs – foam stability
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Figure 5. Changes in mutton myosin turbid-
ity after hydroxyl radical oxidation

a–f – different letters indicate significant 
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properties are the protein capacity to  form emul-
sions with oil and water in  a  food system, assessed 
by  emulsifying ability and stability (Cao et  al.  2022). 
Figure 7 illustrates that the emulsification of the con-
trol group was 18.45 m2·g–1, and the emulsification 
of H2O2 was 21.22, 18.15 , and 16.02 m2·g–1 when the 
concentrations of H2O2 were 5, 10, and 20 mmol·L–1, 
respectively. At  low H2O2 concentrations, myosin 
emulsification significantly increased with rising 
H2O2 levels (P  <  0.05). However, as  H2O2 concentra-
tion further increased, emulsification began to decline, 
dropping below control levels at  20 mmol·L–1  H2O2. 
Additionally, the emulsion stability of the control group 
(0 mmol·L–1 H2O2) was 46.06%, the emulsion stability 
index (ESI) of myosin first rose and then it fell, peak-
ing at  an  H2O2 concentration of  1 mmol·L–1. Beyond 
this point, ESI  significantly decreased, falling below 
control levels. Therefore, it is speculated that moderate 
oxidation is beneficial to the emulsification and emul-
sion stability of myosin, while excessive oxidation will 
destroy its emulsification and emulsion stability. These 
findings align with those of Chen et al. (2020), suggest-
ing that an  overly oxidative environment can induce 
protein conformational changes and crosslink forma-
tion, oxidative muscle damage, and impact water re-
tention and emulsifying properties.

SDS-PAGE analysis. The  impact of  oxidation 
on  myosin was assessed using reductive (+βME) 
SDS-PAGE. In Figure 8 the myosin heavy chain (MHC, 

about 240 kDa) is at the top of the band when the myo-
sin heavy chain (MHC 240 kDa) was the main compo-
nent of myosin (Potter 2022). In addition to the myosin 
heavy chain, three myosin light chains were found 
in the low intensity band, namely light chain 1 (MYL1, 
about 17 kDa), light chain 2 (MYL1, about 14 kDa) and 
light chain 3 (MYL1, about 21 kDa). With the increase 
of  H2O2 concentration, the grey levels of  both the 
myosin heavy chain band and the myosin light chain 
band gradually become lighter, which may be  caused 
by hydroxyl radicals attacking the heavy chain and the 
light chain of myosin, destroying the disulphide bond 
in them and causing the oxidative degradation of myo-
sin, thus leading to  the lightening of  the heavy chain 
and light chain bands. When H2O2 concentration 
is 10 M and 20 M, a new band A with molecular weight 
of about 100 kDa appears, while no new band is gener-
ated at 0.5, 1, and 5 M. The generation of band A may 
be  related to  the aggregation produced by disulphide 
bond crosslinking during the oxidation of  myosin. 
In mild oxidation, myosin may not crosslink or cross-
link is not obvious, and it is easy to be destroyed and 
recovered. In  the case of  severe oxidation, myosin 
is  prone to  crosslinking to  produce new aggregates, 
and this change is  irreversible; the aggregation be-
comes more obvious with the increase of the oxidation 
degree. This corresponds to the results before turbidity 
increase and solubility decrease at 10 M and 20 M. Li's 
experiment showed that the protein crosslinking phe-

Figure 7. Changes in the (A) emulsification and (B) emulsification stability of myosin after oxidation

a–f – different letters indicate significant difference in H2O2 concentration (P < 0.05); EAI – emulsifying activity index; 
ESI – emulsion stability index
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nomenon also occurred under irradiation induction 
(Li et al. 2018).

Fourier transformed infrared spectroscopy spec-
trum analysis. The  secondary structure, indicative 
of  the protein spatial conformation, can be  analysed 

using the amide  I  band (1 600–1 700 cm–1) (Menard 
et al. 2021). Figure 9 illustrates the FTIR spectra of my-
osin after hydroxyl radical oxidation. Figure 10 reveals 
post-oxidation alterations in  the secondary struc-
ture components of  myosin. Relative to  the control 

Figure 8. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) diagram of the myosin globulin 
after hydroxyl radical oxidation

MHC – myosin heavy chain; MYL – myosin light chain

Figure 9. Fourier transformed infrared spectroscopy (FTIR) profile of myosin after hydroxyl radical oxidation

a.u. – absorbance unit
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(0 mmol·L–1  H2O2), oxidation diminished the α-helix 
proportion, increased the β-sheet content, and reduced 
the β-turn presence. It is well known that the secondary 
structure of proteins is determined by hydrogen bonds 
and electrostatic interactions between amino acids 
(Yu et al. 2023). Thus, hydroxyl radicals may attack the 
cysteine of  the myosin head first, leading to progres-
sive unfolding of  the S1  subunit of  the head, causing 
a change in the myosin conformation that results in the 
instability of  the α-helix and, consequently, in  reduc-
tion. Intermolecular hydrogen bonding between car-
bonyl (C = O) and amino (N-H) groups on polypeptide 
chains and adjacent chains escalates, boosting the 
β-sheet content. As  the H2O2  concentration climbs, 
further structural unfolding occurs, with sulfhydryl 
groups oxidising into disulphide bonds, causing peptide 
chains to refold, increasing the β-turn content. These 
findings align with the observations made by  Zhang 
et al. (2019), where an increase in β-sheet content cor-
responded with a  decrease in  α-helices, β-turns, and 
random coils with escalating oxidant levels.

CONCLUSION

This study employed varying concentrations of  hy-
droxyl radicals to  oxidise mutton myosin, inves-
tigating their impact on  the physicochemical and 
structural properties of  the protein. As  the concen-
tration of H2O2 solution increased, a  rise in carbonyl 
content and a decline in thiol content were observed, 
accompanied by  an  increase in  surface hydrophobic-
ity. Fourier-transform infrared spectroscopy of  the 
secondary structure of  myosin indicated a  gradu-

al decrease in  α-helix content, an  increasing trend 
in β-sheet content, and a rise in random coil content, 
suggesting a  transition from ordered to  disordered 
protein structures. With the progression of oxidation, 
at a concentration of 5 mmol·L–1, an  increase in pro-
tein foamability and emulsifying properties was noted, 
suggesting that moderate oxidation enhances the func-
tional properties of  the protein. However, at  concen-
trations of  10 mmol·L–1 and 20 mmol·L–1, significant 
reductions in  protein foamability and emulsifying 
properties were observed, and SDS-PAGE revealed 
the appearance of new bands, likely related to aggre-
gates formed by  disulphide bond crosslinking during 
the oxidation process. This corresponds with increased 
turbidity and decreased solubility at  concentrations 
of 10 mmol·L–1 and 20 mmol·L–1. Hence, it is hypoth-
esised that at concentrations greater than 10 mmol·L–1, 
nearly complete oxidation occurs, leading to increased 
protein crosslinking and a consequent decline in pro-
tein functional properties.
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