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Abstract: To meet rapid and non-destructive identification of selenium-enriched agricultural products selenium-en-
riched millet and ordinary millet were taken as objects. Image regions of  interest (ROI) were selected to extract the 
spectral average value based on hyperspectral imaging technology. Reducing noise by the Savitzky-Golay (SG) smo-
othing algorithm, variables were used as  inputs that were screened by successive projections algorithm (SPA), com-
petitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE), CARS-SPA, UVE-SPA, and 
UVE-CARS, while sample variables were used as outputs to build support vector machine (SVM) models. The results 
showed that the accuracy of CARS-SPA-SVM was 100% in the training set and 99.58% in the test set equivalent to that 
of CARS-SVM and UVE-CARS-SVM, which was higher than that of SPA-SVM, UVE-SPA-SVM, and UVE-SVM. There-
fore, the method of CARS-SPA had superiority, and CARS-SPA-SVM was suitable to identify selenium-enriched millet. 
Finally, 454.57 nm, 484.98 nm, 885.34 nm, and 937.1 nm, which were obtained by wavelength extraction algorithms, 
were considered as the sensitive wavelengths of selenium information. This study provided a reference for the identifi-
cation of selenium-enriched agricultural products.

Keywords: millet; selenium element; spectroscopy; secondary variable screening; support vector machine

Selenium plays an important role that cannot be ne-
glected in antioxidant and disease prevention, but the 
body cannot synthesize the required selenium. So di-
etary selenium supplementation is the most important 
way of  selenium supplement (Mojadadi et  al., 2021). 

Therefore, the identification of  selenium-enriched 
foodstuffs has a  high research significance. Millet 
is a better carrier of selenium (Mu et al. 2018; Liang 
et al. 2020). However, the quality of millet on the mar-
ket is  not easy to  judge. The  correct identification 
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of  selenium-enriched millet provides the possibil-
ity to improve the human body's selenium deficiency 
state (Yu et al. 2018; Rayman et al. 2000).

Nowadays, the detection methods of  selenium 
in foodstuffs include fluorescence spectrophotometry, 
hydride generation atomic fluorescence spectrom-
etry, inductively coupled plasma mass spectrometry 
(Zhao et  al. 2021). However, both fluorescence spec-
trophotometry and hydride generation fluorescence 
spectrometry need chemical treatment of the samples, 
resulting in  waste. The  mass spectrum detector re-
quired by  an  inductively coupled plasma mass spec-
trometer is difficult to popularise.

Hyperspectral imaging technology has the advantages 
of multi-wavelengths, high resolution, and map integra-
tion, without sample pre-treatment and pollution. Com-
pared with the area sampling method of  near-infrared 
spectroscopy, selecting the region of interest (ROI) area 
in the hyperspectral images can better reflect the overall 
situation and make the data more random. So, it has al-
ready been widely used in agricultural engineering (Khan 
et al., 2021; Wang et al. 2021). Millet samples from differ-
ent areas were identified based on hyperspectral imaging 
technology and machine learning, and it was found that 
various algorithm models had different effects on  mil-
let identification (Ji et al. 2019). A partial least squares 
(PLS) model of total selenium in millet was established 
which contents of ninety-three samples. The  results 
showed that the ratio of  the standard error of  the test 
set and that of the training set was 1.073, indicating that 
the model prediction accuracy and robustness were high. 
It could realize rapid detection of total selenium content 
(Wang et al. 2021). It was judged whether high-quality 
rice was mixed with inferior rice using hyperspectral 
imaging technology. The results showed that the cross-
validation accuracy of  SVM model based on  charac-
teristic wavelength was 95% and the prediction set was 
96%, while the cross-validation accuracy of SVM model 
based on the optimal principal component number was 
94% and the prediction set was 98%. It provided a  fast 
and non-destructive detection method for the problem 
of rice adulteration (Sun et al. 2014). Hyperspectral im-
aging technology was used to  analyse the spectral im-
age features from three types of rice. The results showed 
that rice had prominent characteristic peaks in the band 
of 480–550 nm, and various kinds of rice had different 
light and dark ratios in  binary images (Si et  al. 2020). 
Based on visible/near-infrared hyperspectral image anal-
ysis technology (NIRSTM DS2500; FOSS, Denmark), 
a total of 480 samples of eight millet varieties were ana-
lysed, and spectral and image features were extracted, 

then the SVM models and the attentional convolutional 
neural network models were established. The  results 
showed that the attention-radial basis function neural 
network models could greatly improve the recognition 
accuracy of varieties (Wang et al. 2020).

Hyperspectral imaging technology has attracted much 
attention due to  its non-destructive detection char-
acteristics (Garcia-Martin et  al. 2020; Liu et  al. 2021). 
Selenium-enriched millet and ordinary millet were dis-
tinguished based on the hyperspectral imaging technol-
ogy in the study, which will provide a reference for the 
efficient identification of selenium-enriched millets.

MATERIAL AND METHODS

Material
The purchased experimental samples were bagged 

selenium-enriched fragrant Duojiao millet and small 
grain Shennong millet. The  labelled selenium con-
tent of selenium-enriched fragrant Duojiao millet was 
0.14 mg kg-1, and small grain Shennong millet was or-
dinary millet without selenium (detected by  Agricul-
tural Products Quality Supervision and Testing Center 
of Ministry of Agriculture in China). Forty sets of sam-
ples were taken from each kind of millet samples, a to-
tal of 80 sets of samples were taken, and each of them 
had a mass of 50 g.

Hyperspectral image acquisition
The hyperspectral image acquisition system used 

in  the experiment mainly included a  complemen-
tary metal oxide semiconductor (CMOS) camera 
(Hurricane-40-U2; Photonfocus, Switzerland), a  line-
scan spectrograph (ImSpector V10E; Specim, Fin-
land), two 250 W optical fibre halogen tungsten lamps 
(ALPHA-1501, 21 V / 250 W), a set of conveying de-
vices and other components. The  spectral range was 
400–1 000 nm, and the spectral resolution was 1 nm.

During the collection, the samples of  each group 
were laid flat in  a  petri dish and placed on  a  mobile 
platform for image collection. The exposure time of the 
camera and the speed of the platform movement were 
determined in advance to ensure the image was clear. 
Finally, a 300 × 400 × 350 hyperspectral image was ob-
tained. Then the original image Ioriginal was corrected 
to get the image I following the calculation formula:

black

white black

originalI I
I

I I

−
=

− 	
(1)

In the formula, I was the corrected image, which was 
used for subsequent processing.
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Region of interest extraction
To make full use of  millet samples and to  increase 

the number of model training samples, nine ROIs were 
selected for each hyperspectral image. The schematic 
diagram of ROI selection is shown in Figure 1.

The number of pixels for each ROI was 400 and the 
average spectral value in the ROI was used as a spec-
tral record of the sample. Finally, a total of 720 spectral 
curves were collected. Then the spectral curves of the 
two kinds of millet were averaged. Because of the noise 
at  both ends of  the extracted spectral curves, a  total 
of 478 wavelengths were selected in the middle region 

of  450.53–950.09  nm. The  average original spectral 
curves are shown in Figure 2.

For more useful information, the Savitzky-Golay 
(SG) smoothing algorithm was applied to  reduce the 
noise. The smoothing point was set to three. The spec-
tral curves after noise reduction are shown in Figure 3.

Characteristic wavelength selection
There were lots of redundancy and multicollinearity 

problems in the 478 wavelengths. Selecting representa-
tive characteristic wavelengths was one of the effective 
ways to solve the problems.

Successive projections algorithm (SPA). The  SPA 
is  an  approach to  forwarding the characteristic vari-
able selection. SPA selects the least collinearity variables 
combination that contains the least redundant informa-
tion (Araújo et al. 2001; Cao et al. 2021). The brief steps 
are as follows:

Assuming the starting iteration vector ( )0 kx , the num-
ber of variables N needed to be extracted and the spec-
tral matrix of column J are given.

Step  1. Select one optional column of  the spectral 
matrix (j column), assign the j column of the modelling 
set to  jx , and, and note it as  ( )0 kx .

Step 2. Let the set of unselected wavelengths be S, that is:

( ) ( ){ }, 1 , 0 , 1S j j J j k k n = ≤ ≤ ∉ −  


	
(2)

Step 3. Calculate the projection of  jx  to the other col-
umn vectors separately:

( )( ) ( ) ( ) ( )( ) 1

1 1 1 1 ,
j

T T
x j j k n k n k n k nP x x x x x x
j s

−

− − − −= −

∈ 	
(3)

Figure 1. Schematic diagram of millet sample ROI selection

ROI – region of interest

Figure 2. Original spectral curves of selenium-enriched 
millet and ordinary millet

Figure 3. Savitzky-Golay (SG) corrected spectral curves 
of selenium-enriched millet and ordinary millet
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Step 4. Extract the spectral wavelength of the largest 
projection vector:

( ) ( ) ,
jxk n arg max P j s  = ∈     	

(4)

Step 5. Let ,j xx p j s= ∈ .
Step 6. Let n = n + 1 , if n < N, then resume Step 1 

to start loop computing.
Finally, the extracted wavelengths are

( )( )0, , 1k nx N= −
	

(5)

Competitive adaptive reweighted sampling (CARS). 
The  CARS firstly uses adaptive reweighted sampling 
technology and exponential decay function to select the 
wavelengths with the largest absolute value of  regres-
sion coefficient in  the PLS model, then it  removes the 
wavelengths with small weight. Finally, the set is chosen 
for the optimal variable's combination with the lowest 
root mean square error of  cross validation (RMSECV) 
of prediction by cross-validation (Li et al. 2009; Guo et al. 
2020). The steps of the CARS algorithm are as follows:

Step 1. Draw a fixed proportion of samples randomly 
from the data set by Monte Carlo sampling (MCS) and 
establish the PLS model to  obtain the absolute value 
of the regression coefficient.

Step 2. Select the corresponding wavelengths of the 
regression coefficient with a large absolute value by ex-
ponentially decreasing function (EDF).

Step 3. Process the data corresponding to the selected 
wavelength based on adaptive reweighted sampling (ARS) 
and establish the PLS model to calculate its RMSECV.

Step  4. Repeat the above steps to  substitute the new 
subset of the remaining wavelengths into the calculation.

Finally, select the most optimal subset of wavelengths 
with the smallest RMSECV.

 Uninformative variable elimination (UVE).  UVE 
gets rid of variables that are not as important as random 
variables in the model after adding artificial random var
iables to  the data as  a  reference (Zou et  al.  2010; Guo 
et al. 2016). The steps of the UVE algorithm are as follows:

Step 1. Establish the PLS model of the spectral matrix n mX ×  
and the target component content matrix 1nY × , then select 
the optimal factor f through the leave-one-out cross-valida-
tion, where n is the number of samples, and m is the number 
of wavelength variables, and the following is the same.

Step  2. Generate a  noise matrix n mR ×  artificially, and 
it consists of random numbers with a data interval of 0.0-
1.0 multiplied by a tiny constant to ensure that the impact 
on the model is negligible. Combine spectral matrix n mX ×  
and noise matrix n mR ×  to form dilation matrix 2

R
n mX × .

Step 3. Establish the PLS model of the extended ma-
trix 2

R
n mX ×  and the target component content matrix 

1nY ×  to  obtain the regression coefficient matrix 2n mB ×  
by the leave-one-out cross-validation.

Step 4. Calculate the standard deviation S(b) and the 
mean value mean(b) of the regression coefficient matrix 

2n mB ×  in columns, then calculate ( ) ( ) /i i iC mean b S b= ,
   1, 2, , 2 i m= … .

Step 5. Take the maximum absolute value in the sta-
bility index C of random variables as the variable selec-
tion cut-off value on ( )1,2 m m+ . It is:

( )maxC max abs C =   	 (6)

Step 6. Define the variables of  spectral matrix n mX ×  
corresponding to  i maxC C<  as  uninformative variables 
and remove them, then form the remaining variables into 
a new matrix newX .

Secondary variable selection. To  further simplify 
the model by reducing the number of variables, UVE 
and CARS are selected as  primary variable selection 
methods, and then SPA is used for the secondary vari-
able selection. 

Discriminant Analysis
To identify the selenium-enriched situation of millet 

effectively, SVM models were established to screen out 
the best performance prediction model. The  models 
were based on SPA, CARS, UVE, UVE-SPA, CARS-SPA, 
and UVE-CARS characteristic wavelength extraction 
methods. The  higher the correct recognition accu-
racy, the better the identification performance of  the 
model. The  number of  input variables was the num-
ber of characteristic wavelengths required to maintain 
the corresponding identification accuracy. It was used 
as a standard to measure the practicality of the model.

RESULTS AND DISCUSSION

According to the statistical results of the samples, the 
spectral values of  the data set were divided into two 
parts at the ratio of 2  : 1, as shown in Table 1. In the 
analysis, the categorical variable of selenium-enriched 
millet was set to 1, and the categorical variable of ordi-
nary millet was set to 2.

Table 1. Division results of set samples number

Data set Selenium-enriched millet Ordinary millet
Training set 240 240
Test set 120 120
Total 360 360
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Successive projections algorithm (SPA)
The process of  extracting feature parameters by SPA 

is shown in Figure 4. According to the principle of mini-
mum root mean square error (RMSE), when the number 
of variables was five, the change of RMSE was no longer 
significant, and the RMSE was 0.36599, as shown in Fig-
ure 4A. Finally, five wavelength variables were selected. 

They were 450.53 nm, 454.57 nm, 484.98 nm, 515.53 nm, 
and 937.1 nm, as shown in Figure 4A.

Competitive adaptive reweighted sampling (CARS) 
The process of extracting feature parameters by CARS 

is  shown in  Figure  5, Figure  5A shows the changes 
in  the number of  wavelength variables, Figure  5B 
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Figure 4. Key variables selection by SPA: (A) variation of RMSE, (B) key variables extracted

RMSE – root mean square error; SPA – successive projections algorithm

Figure 5. Key variables selection by CARS: (A) changes in the number of wavelength variables, (B) variation of RMSECV, 
(C) path of variables regression coefficients
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shows the variation of RMSECV, and Figure 5C shows 
the path of variables regression coefficients. It was easy 
to see after 12 samplings by the CARS algorithm, a to-
tal of 140 variables between 500.24 nm and 947.92 nm 
was selected, as shown in Figure 6, where the red dots 
are the selected variables.

Uninformative variable elimination (UVE)
The stability distribution map was optimised by UVE 

variables, as  shown in  Figure  7, and the mean coeffi-
cient/standard deviation was used to evaluate the stabil-

ity value. The red part in the figure is the corresponding 
stable value of  the artificially added random variable. 
It determined the threshold value of spectral variables 
through the fluctuation of the stable value of the random 
variable, i.e.  the corresponding variable was discarded 
when the stability value was within the threshold and 
variables outside the threshold were retained for model 
building. Finally, the number of variables was reduced 
from 478  to  356 after UVE screening, while the vari-
ables were between 450.53 nm and 950.09 nm as shown 
in Figure 8, where the red dots are the selected variables.

Figure 6. Original spectral curves of selenium-enriched 
millet and ordinary millet

Figure 7. Key variables selection by UVE

UVE – uninformative variable elimination
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Secondary variable selection
The number of  variables affected the computation 

amount and complexity of  the model. Therefore, based 
on  UVE and CARS algorithms, SPA was taken as  the 
secondary variable selection method to  screen variables 
again.

CARS-SPA. As  shown in  Figure  9, the four wave-
length variables were selected finally: 557.51  nm, 
664.09 nm, 885.34 nm, and 946.84 nm. After the sec-
ond selection, the number of variables selected finally 
was reduced from 140 to 4.

Figure 9. Key variables selection by CARS-SPA: (A) variation of RMSE, (B) key variables extracted

CARS – competitive adaptive reweighted sampling; SPA – successive projections algorithm; RMSE – root mean square error

Figure 10. Key variables selection by UVE-SPA: (A) variation of RMSE, (B) key variables extracted

SPA – successive projections algorithm; UVE – uninformative variable elimination; RMSE – root mean square error

UVE-SPA. The process of extracting feature param-
eters by  UVE-SPA is  shown in  Figure  10. Finally, the 
four wavelength variables were selected: 454.57  nm, 
484.98 nm, 542.12 nm, and 937.1 nm. After the second 
selection, the number of variables selected finally was 
reduced from 356 to 4.

UVE-CARS. Since the number of variables screened 
by  UVE was greater than the number of  variables 
screened by  CARS, indicating that CARS was better 
than UVE in  screening selenium-containing infor-
mation on  millet samples, the CARS algorithm was 

RM
SE

Number of variables included in the model

Final number of selected variables: 10 
(RMSE = 0.34449)

1
0.32

0.4

0.48

0.52

2 3 4 5 6 7 98

0.38

0.36

0.34

0.46

0.44

0.42

0.5

(A)

Variable index

First calibration object
Selected variables

0
0.24

0.26

0.28

0.3

0.32

0.36

20 40 100 120 14060 80

0.34

(B)

RM
SE

Number of variables included in the model

Final number of selected variables: 10 
(RMSE = 0.37072)

(A)

1
0.36

0.38

0.4

0.44

0.46

0.52

2 3 104 5 6 7 8 9

0.42

0.48

0.5

Variable index

First calibration object
Selected variables

0
0.25

0.3

0.35

0.4

0.45

0.6

100 150 300 350 40050 200 250

0.5

0.55

(B)



452

Original Paper	 Czech Journal of Food Sciences, 40, 2022 (6): 445–455

https://doi.org/10.17221/129/2022-CJFS

used to  screen the variables after UVE, and the key 
variables after secondary selection are shown in Fig-
ure 11. Finally, 100 variables between 522.68 nm and 
945.76  nm were selected after 13  samplings by  the 
CARS algorithm.

The support vector machines classification model 
was established. The  radial basis function (RBF) was 
selected, and the samples were randomly divided into 
ten groups for cross-validation. The  effects of  c  and 
g parameters on the accuracy are compared in Table 2. 
It was found that the accuracy rate gradually increased 
with the increase of parameters. When c was 100 and 

Figure 11. Key variables selection by UVE-CARS: (A) changes in the number of wavelength variables, (B) variation 
of RMSECV, (C) path of variables regression coefficients

CARS – competitive adaptive reweighted sampling; RMSECV – root mean square error of cross validation; UVE – unin-
formative variable elimination

g  was  10, the accuracy reached the maximum value 
of  100%, and then the accuracy began to  decrease. 
Therefore, the best parameter combination was select-
ed that c was 100 and g was 10.

Based on SPA, CARS, UVE, CARS-SPA, UVE-SPA, 
and UVE-CARS characteristic wavelength extraction 
methods, SVM predictive analysis models were estab-
lished respectively, while the parameter c was 100 and 
g was 10. The accuracy of the training set and test set 
was used as the evaluation index to evaluate whether 
the model was suitable for the identification of seleni-
um-enriched millet. The results are shown in Table 3.

After variables optimization, the models were greatly 
simplified. After SPA, CARS, UVE, CARS-SPA, UVE-
SPA and UVE-CARS, the number of SVM model vari-
ables was 5, 140, 356, 4, 4 and 100, respectively, and the 
number of spectral variables was reduced 98.95, 70.71, 
25.52, 99.16, 99.16 and 79.08% compared with that be-
fore treatments. Therefore, CARS-SPA and UVE-SPA 
had the strongest simplification ability for the models. 
Compared with CARS and UVE, SPA had the strongest 
ability to  simplify the number of  characteristic wave-
lengths. The SPA algorithm for feature variables screen-
ing could be  used to  significantly reduce the number 

Table  2. The  accuracy of  different combinations 
of c and g (%)

g
c

0.01 0.1 1 10 100
0.01 72.50 72.50 74.31 86.67 88.47
0.1 72.78 74.86 86.81 87.92 97.08
1 76.67 87.50 88.47 97.36 99.44

10 87.92 87.78 96.25 99.31 100
100 89.31 91.94 99.58 99.86 99.86

g – kernel function parameter; c – penalty coefficient
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of variables, providing a  reference for the model sim-
plification.

After the optimization of  variables, the accuracy 
of  the model was improved, and the classification 
ability was enhanced. Firstly, it  was easy to  see from 
Table 3 that the accuracy of SPA-SVM was the lowest, 
the accuracy of the training set was 99.79%, and the ac-
curacy of the test set was only 98.33%. While the accu-
racy of  CARS-SPA-SVM and UVE-SPA-SVM models 
was higher than that of SPA-SVM in the training set, 
and the accuracy was increased by  1.25% and 0.42% 
in the test set, respectively. It showed that the second-
ary selection using SPA could effectively enhance the 
accuracy of models that used SPA in primary variable 
selection. Secondly, the accuracy of models was 100% 
in the training set, and the accuracy was 99.58% in the 
test set that used CARS for variables selected, includ-

ing primary selection and secondary selection. It could 
be seen that the models using CARS had the best accu-
racy. It showed that the CARS algorithm retained the 
characteristic wavelengths which were strongly corre-
lated with the selenium element information on millet 
in  the variables. Finally, although the number of  va
riables screened by CARS was 140, the number of vari-
ables screened by  UVE was 356, the identification 
accuracy of CARS-SVM was better than that of UVE-
SVM. It could be inferred that the accuracy in the test 
set decreased because too many useless variables in-
terfered with the calculation of  the models. Because 
redundant variables would increase nonlinear cor-
relation factors, which had a certain restrictive effect 
on the accuracy and stability of the prediction model.

In summary, using the CARS algorithm for the pri-
mary screening and the SPA algorithm for the sec-
ondary selection for variables not only retained the 
characteristic wavelengths that were strongly related 
to the selenium element in millet, but also greatly re-
duced the number of spectral variables. It could be in-
ferred that the combination of the SPA algorithm and 
the CARS algorithm had obvious advantages in feature 
variables selection. So, CARS-SPA-SVM was consid-
ered the best model for discriminating the selenium-
enriched information on  millet. The  identification 
results are shown in Figure 12.

Finally, the sensitive wavelengths with the highest 
contribution to  the model were selected after vari-
ables optimization. Because the number of  variables 
screened by UVE algorithm was the largest, CARS was 

Figure 12. Identification results of CARS-SPA-SVM model: (A) identification result of the training set, (B) identifica-
tion result of the test set

CARS – competitive adaptive reweighted sampling; SPA – successive projections algorithm; SVM – support vector machine
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Table 3. The results of different models

Models Number 
of wavelengths

Accuracy (%)
training set test set

SPA-SVM 5 99.79 98.33
CARS-SVM 140 100 99.58
UVE-SVM 356 100 99.17
CARS-SPA-SVM 4 100 99.58
UVE-SPA-SVM 4 100 98.75
UVE-CARSSVM 100 100 99.58

SPA – successive projections algorithm; CARS – competi-
tive adaptive reweighted sampling; UVE – uninformative 
variable elimination; SVM – support vector machine
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the second, and SPA was the least. Therefore, the vari-
ables screened by SPA and CARS were compared with 
the variables screened by  UVE respectively to  obtain 
wavelength variables sensitive to the information on se-
lenium enrichment. After UVE processing, the number 
of the remaining variables without irrelevant informa-
tion was 356 between 450.53 nm and 950.09 nm. After 
SPA processing, the number of  the remaining vari-
ables without irrelevant information was 5, and a total 
of three variables, which were 454.57 nm, 484.98 nm, 
and 937.1  nm, respectively, coincided with selection 
variables by UVE. After CARS processing, the number 
of the remaining variables without irrelevant informa-
tion was 140 between 500.24 nm and 947.92 nm, and 
one of them coincided with selection variables by UVE, 
which was 885.34 nm. Therefore, it was considered that 
454.57 nm, 484.98 nm, 885.34 nm, and 937.1 nm were 
the sensitive wavelengths of  selenium information 
in millet samples. The results indicated that these sen-
sitive wavelengths had a more significant effect on the 
molecular structure of Se-enriched millet.

CONCLUSION

In this study, image data of selenium-enriched millet 
and ordinary millet were collected based on the hyper-
spectral image acquisition system, and then the ROIs 
were extracted. The  average spectral value in  the 
ROIs was taken as  a  spectral record of  the samples, 
and a  total of  720 spectral curves were extracted fi-
nally. The  SG  smoothing algorithm was performed 
on the original spectra, then SPA, CARS, UVE, CARS-
SPA, UVE-SPA, and UVE-CARS were used to extract 
characteristic wavelengths for the denoised spectral. 
The number of  spectral variables was reduced 98.95, 
70.71, 25.52, 99.16, 99.16, and 79.08% compared with 
that before treatment. For CARS and UVE, SPA had 
the strongest ability to simplify the model. To identify 
selenium-enriched millet, SVM models were estab-
lished with the proposed characteristic wavelengths. 
The discrimination accuracy was used as  the evalua-
tion criterion. The discriminant accuracy of the train-
ing set was 99.79% in  SPA-SVM model, while it  was 
100% in  CARS-SVM, UVE-SVM, CARS-SPA-SVM, 
UVE-SPA-SVM model and UVE-CARS-SVM model. 
The discriminant accuracy of the test set was 98.33% 
in the SPA-SVM model, while it was 99.17% in UVE-
SVM model, 98.75% in UVE-SPA-SVM model, 99.58% 
in  CARS-SVM, CARS-SPA-SVM and UVE-CARS-
SVM model. The results showed that the models using 
CARS to  select variables including primary selec-

tion and secondary selection had the best accuracy. 
And  the combination of  the SPA algorithm and the 
CARS algorithm had obvious advantages in  feature 
variables selection. Therefore, the CARS-SPA-SVM 
model was the best model for identifying selenium-
enriched millet.
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