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Abstract: In 2008, the European Commission highlighted the risk of wine mislabelling regarding the geographical
origin and varietal identification. While analytical methods for the identification of wine by geographical origin exist,
a reliable strategy for authentication of wine variety is still missing. Here, we investigate the suitability of the meta-
bolomic fingerprinting of ethyl acetate wine extracts, using ultra-high-performance liquid chromatography coupled
to high-resolution tandem mass spectrometry. In total, 43 white wine samples (three varieties) were analysed within
our study. The generated data were processed by principal component analysis and then by partial least squares
discriminant analysis. The resulting statistical models were validated and assessed according to their R? (cum) and
Q? (cum) parameters. The most promising models were based on positive ionisation data, enabling successful clas-

sification of 92% of wine samples.
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Because of its high commercial value and the large
volumes produced, wine is a commodity potentially
subjected to fraud and mislabelling (ViLLANO et al.
2017). Preventing this problem is of high concern
in the European Union, which is the world’s leading
wine producer (European Commission 2019; available
at https://ec.europa.eu/agriculture/wine/statistics_
en). The price of wine is determined by its quality,
which is, in turn, influenced by a number of factors,
such as grape growing region, oenological practice,
grape variety (or varieties), wine-making techniques,
age, and year of vintage (ALANON et al. 2015). On
this account, it is a legal requirement that wine label-
ling accurately reflects such information. For char-
acterisation of basic wine quality parameters, such
as content of alcohol, sugars, acids, etc., standardised
methods have been in routine use. In addition, pro-
cedures enabling the detection of various fraudulent

practices e.g. dilution with cheaper products such
as fruit juices, or the addition of undeclared colour-
ants, sweeteners or aroma (GEANA et al. 2016), have
become available in specialised laboratories.

In 2008, the European Commission drew attention
to the growing risk of wine mislabelling, particularly
regarding geographical origin, and grape variety.
As aresult, the demand for reliable analytical strate-
gies applicable to the authentication of these wine
parameters has become urgent (European Commis-
sion 2019; available at https://ec.europa.eu/jrc/en/
research-topic/food-authenticity-and-quality).

As regards authentication of wine according to its ge-
ographical origin, standardised approaches based
on stable isotope ratio analysis (CAMIN et al. 2015;
FAN et al. 2018) and/or trace element measurement
(FAN et al. 2018) are currently commonly employed.
On the contrary, discrimination of wine according to
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the grape variety used for production still remains
a challenging task, although a number of studies aimed
at varietal authentication have been performed in the
recent decade. In some of them, proton nuclear mag-
netic resonance was employed (GODELMANN et al.
2013). However, chromatography coupled with mass
spectrometry was the most common method used.
While discrimination based on volatiles fingerprint-
ing was reported in only a few studies (ZIOLKOWSKA
et al. 2016), liquid chromatography coupled with
high-resolution mass spectrometry (HPLC-HRMS)
represented the dominating technique used for this
purpose. The overview of wine sets tested by HPLC-
HRMS and the outcome of chemometric analysis are
presented in Table 1. As shown here, many different
discriminatory markers have been identified and used
to build statistical models for classification of wine
categories differing in grape variety. It is worth noting
that most of the studies were focused on red wines
only. As mostly white wines are produced in the Czech
Republic, we focused on this category. Riesling, Pinot
Gris, and Roter Traminer representing the group of
10 most popular white wine varieties in the Czech
Republic were involved in the authentication study.

MATERIAL AND METHODS

Chemicals and samples. HPLC grade methanol
was purchased from Merck and HPLC grade ethyl
acetate from Fluka Analytical. Deionised water was
obtained from a Milli-Q purification system supplied
by Merck. Mobile phase additives formic acid and
ammonium formate (purity > 98%) were purchased
from Sigma-Aldrich.

Monovarietal commercial bottled white wines (in to-
tal 43) were purchased directly from winemakers.
The samples represented wines of Czech geographic
origin, produced by different winemakers, from
different grape varieties: Riesling (n = 14), Pinot
Gris (n = 17) and Roter Traminer (n = 12); and vin-
tages (2013 to 2015, individual years were as much
as equally represented in each variety group); thus,
a very variable sample set was obtained.

Sample preparation. Four mililiters aliquot
of the sample was transferred into a 15-ml plastic
cuvette. In the next step, 4 ml of water acidified with
formic acid (pH 2) and 4 ml of ethyl acetate were
added, the cuvette was intensively shaken for 3 min
and then centrifuged at 10 000 rpm for 5 min at 5°C.
A 3-ml aliquot of the upper phase was recovered
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and evaporated to dryness under a gentle stream
of nitrogen. The residue was reconstituted to a final
volume of 500 pl with a mixture of methanol and
water (50:50, v/v). In this way, the samples were six-
time pre-concentrated. At the same time, a quality
control sample (QC) was obtained by the mixing
of equal volumes of all the tested samples. Until
U-HPLC-HRMS/MS analysis, all extracts were stored
in the freezer at —18°C.

Instrumental conditions. For non-target anal-
ysis, the Dionex UltiMate 3000 RS U-HPLC sys-
tem (Thermo Fisher Scientific, USA) coupled
to the quadrupole time-of-flight (QTOF) SCIEX
TripleTOF® 6600 mass spectrometer (AB SCIEX,
Canada) was used.

Chromatographic separation was performed us-
ing HSS T3 column (1.8-pm, 2.1 mm x 100 mm;
Waters). The mobile phases consisted of (A) 5 mM
ammonium formate and 0.1% formic acid in Mil-
li-Q water and (B) 5 mM ammonium formate and
0.1% formic acid in methanol. For both polarities,
the elution multistep gradient was used as follows:
0.0 min (95% A, flow 0.40 ml/min), from O to 1 min
(95% A, flow 0.40 ml/min), from 1 to 11 min (0% A,
flow 0.55 ml/min); from 11 to 12 min (0% A, flow
0.60 ml/min); from 12 to 12.1 min (95% A, flow
0.40 ml/min); from 12.1 to 14 min (95% A, flow
0.40 ml/min). The column was kept at a temperature
of 45°C. The sample injection volume was set at 4 pl.

The TripleTOF instrument was equipped with
aDuoSpray™ion source. The instrument was operated
either in positive (ESI+) or negative mode (ESI-);
parameter settings used for the measurement were:
capillary voltage, + 5.0 kV (ESI+) and —4.5 kV (ESI-);
nebuliser pressure: 50 psi, drying gas pressure: 50 psi,
curtain gas pressure: 35 psi, source temperature:
480°C; and declustering potential 80 V.

To collect MS and MS/MS spectra, full mass
scan (TOF MS) and information-dependent acqui-
sition (IDA) methods were simultaneously used.
The TOF MS spectra were acquired in the m/z range
100-1200 at an acquisition rate of 1.5 spectra s
(periodic cycle time 0.65 s), and the product ion
(PI) spectra were acquired in the m/z range 50—
1200 at an acquisition rate of 1.5 spectra s™! (periodic
cycle time 0.65 s). The collision energy was of 35 V
with the spread of + 15 V. In order to achieve the
highest mass accuracy throughout the measurement,
an automatic calibration was regularly performed
(every 10 samples) by the calibration delivery system
(CDS, APCI calibration solution). In order to avoid
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systematic bias due to analytical variation, the in-
batch order of all samples analysed was random and
the QC sample was analysed at regular intervals
through the analysis (every 10 wine samples).

The instrument was controlled by Analyst 1.7.1 TF
(AB SCIEX, Canada) and the qualitative analysis was
performed using PeakView 2.2 software (AB SCIEX,
Canada).

Repeatability assessment. Based on the repeated
measurement (n = 10) of the QC sample, the re-
peatability was determined as a relative standard
deviation (RSD) of the response for 10 ions (com-
pounds) randomly selected throughout the whole
range of retention times. The RSD values ranged
between 2—-10%.

Data processing and statistical analysis. For data
processing, MarkerView 1.3.1 software (AB SCIEX)
was used. As a starting point, two automated algo-
rithms, the first one for peak finding and the second
one for retention time (RT) and m/z alignment, were
applied. Peak detection parameters were set to a mini-
mum peak width of 0.02 Da, a noise threshold of
10 and subtraction multiple factor of 1.5. The param-
eters used for RT and m/z alignment were as follows:
RT range 0-12; m/z 100—-1200, RT tolerance 0.2 min;
mass tolerance 0.03 Da. In this way, two separate data
matrices (one for ESI+ and one for ESI-) consist-
ing of lists of features were obtained. Subsequently,
total area sum normalisation was performed for
each sample and the data were pre-processed using
Pareto scaling. Finally, to obtain the first overview
of the data structure, principal component analysis
(PCA) was performed.

Simultaneously, the data were exported into SIMCA
13.0 software (Umetrics), where PCA and a partial
least squares discriminant analysis (PLS-DA) were
performed. Prior to the actual PCA and PLS-DA,
the data were log transformed (to lower the data
skewness) and Pareto-scaled. The most prominent
variables for the statistical model building were
selected, based on the variable importance in pro-
jection (VIP) plot.

The chemometric models obtained were accom-
panied with the R? (cumulative) and Q? (cumulative)
parameters, which were used to determine the valid-
ity of the models. R? (cum) indicates the variation
described by all components in the model, and Q*
(cum) is a measure of how accurately the model can
predict class membership. Both parameters were
calculated by a seven-round internal cross-validation
of the data, using a default option of SIMCA. R* (cum)

and Q? (cum) values higher than 0.5 indicate good
quality of the model; values close to 1 then indicate
an excellent PLS-DA model (TrR1BA et al. 2015).
For the validation of models, a permutation test with
100 permutations was used.

RESULTS AND DISCUSSION

In this study, the experience obtained in our pre-
vious research focused on the critical assessment
of HRMS for food authentication was employed.
Nevertheless, careful tuning of sample analysis had
to be performed in the first phase. Much attention
was also paid to the processing of the generated
data, because it is a critical step in any fingerprinting
strategy (HAN et al. 2017). In the paragraphs below,
the strategy employed in this pilot study is introduced.

U-HPLC-HRMS/MS metabolomics fingerprinting
method. Like several other similar studies concerned
with varietal origin-based wine authentication (Ta-
ble 1), the reversed phase HPLC-QTOF-MS technique
was used for non-target analysis of wine metabolome
components. As shown in Table 1, most of the dif-
ferentiating markers were secondary metabolites,
such as polyphenols, which is not surprising — red
wines are richer in these compounds because they
are made using the entire grape (skin and seeds
included), while white wines, on which this study
is focused, are produced by using only the free-
running grape juice. To pre-concentrate these impor-
tant secondary metabolites, ethyl acetate extraction
of acidified wine samples was performed. When
comparing direct injection of wine with the analysis
of organic extract, up to 20-times higher signal in-
tensities of some phenolic compounds (e.g. catechin
or fertaric acid) were obtained, probably not only
due to the injection of higher matrix equivalent, but
also to a less intensive matrix suppression, as most
polar metabolites are transferred into the organic
extract in a limited amount.

Figure 1 shows an example of the total ion chro-
matogram of a wine sample. As can be seen here,
a number of compounds were detectable in both
ionisation modes. Nevertheless, to assess the clas-
sification potential of these fingerprints, multivariate
statistics were employed for data processing.

Chemometric analysis. Chemometric analysis
of generated data is always a critical step in authen-
tication based on non-target screening. Raw data
files obtained by the analysis of 43 samples were
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Table 1. Analytical approaches used for authentication of wine according to the origin
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Parameters of classification models
Source
and main results

Metabolites

Var. in clas-
sification

MS detection Chemometric

Varieties

No. of

discrimination varieties

Origin-based

Analytical technique

Sample preparation

2011)

(DELCAMBRE
& SAUCIER 2013)

(VACLAVIK et al.

=95.6%

ESI+, PLS-DA model,
recognition ability = 100%,

prediction ability

PLS-DA 3 25

Non-targeted

Cabernet Sauvignon,
Merlot, Pinot Noir

varietal

QTOE-MS
RP-U-HPLC—(ESL-)

RP-HPLC—(ESI+) —

Direct injection

2 (phenols)

Non-targeted

Syrah, Merlot, Pinot
Noir

varietal

—-QTOF-MS

Filtration

(RUBERT et al.
2014)

0.9,

0.84, 100% correctly classified

Direct injection — ESI+, Sauvignon

Blang, Riesling and Silvaner, R?

QZ

samples (U-HPLC —QTOF-MS,
best model)

3,2

Tempranillo, Shiraz,
Chardonna;

Merlot, Pinot Noir,
Rieslin;

Non-targeted OPLS-DA

y Blanc,

g, Sauvignon
Blanc, Silvaner

9

RP-U-HPLC—(ESI+/-)
varietal

Direct injection/ethyl
acetate extraction

—QTOF-MS, DART -

QTOE-MS

(P1sANO et al.
2015)

4 (anthocyanins) 100% correctly classified samples

4

D-UPLS

Non-targeted

Aspiran, Bonarda,
Malbec, Merlot,
Sangiovese, Syrah,

Cabernet Sauvignon,

varietal and
geographical

RP-HPLC—(ESI+) —
QTOE-MS

Filtration

Tempranillo

Filtration, centrifuga-
tion, dilution in water,

derivatisation

(MALEC et al.

5 (amines
and phenols)

Merlot, Cabernet

RP-UPLC—(ESI+) —

Targeted

varietal

2017)

Sauvignon

QqQ-MS

0.64, correctly

other varieties 85%

0.69, Q*
classified — Cabernet Sauvignon 93%, (Li et al. 2018)

R =

50 (45 nonantho-
cyanins and
5 anthocyanins)

OPLS-DA

Targeted

Cabernet Sauvignon
and 7 not specified

8

graphical and
year of vintage

varietal, geo-

RP-HPLC-(ESI+/-) —
QqQ-MS

Filtration
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Figure 1. Pinot Gris ESI+ (blue) and ESI- (pink) total ion
chromatograms

10 11

processed by MarkerView software. After automated
peak finding and retention time (RT) and m/z align-
ment, two separate data matrices were obtained. ESI+
matrix contained 2 096 features and ESI- contained
1 045 features. To remove signal redundancy, all
isotopic peaks and the background peaks originated
from blank samples were excluded. After this step,
reduced data matrices contained 1729 features (ESI+)
and 703 features (ESI-). Subsequently, to obtain
a first overview of the data structure, PCA was per-
formed (Figure 2A and B). Data points (samples) are
coloured according to the variety of the respective
wine samples. In both ionisation polarities, samples
were significantly mixed (regarding wine variety).
It was therefore necessary to proceed deeper within
the data processing. For this purpose, data matri-
ces were exported into the SIMCA program. The
robustness of the analytical procedure was con-
firmed by the tight clustering of the QC samples
(Figure 2A and B).

In the SIMCA program, both data matrices were
log-transformed and Pareto-scaled. Pre-processed
data were filtered using VIP plot. In the VIP plot, the
variables are ordered according to their VIP scores.
The higher the VIP score of a variable is, the higher
the effect on class separation the variable has (X1 et
al. 2014). In general, if the VIP score is higher than
1, the variable might be considered as important.
In all the presented models, a high amount (hun-
dreds) of variables reached a VIP score of 1 or higher.
Nevertheless, statistical models with a high ratio
of ‘number of variables/number of samples’ are
more prone to be over-fitted (X1 et al. 2014). There-
fore, the numbers of the variables in all our models
were reduced (only variables with the highest VIP
score were used). Therefore, the ratios of ‘number
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Figure 2. PCA score plots distribution of wine samples and tight clustering of QC sample repeated measurements

(black) in ESI+ (A) and ESI- (B)
red — Pinot Gris; green — Riesling; blue — Roter Traminer

of variables/number of samples’ were lower than 1.
Selected variables were subsequently used to build
PLS-DA models.

In the case of ESI+ data, the VIP threshold was
set to 3 (considering the abovementioned criteria).
Therefore, only variables with VIP scores higher than
3 were further processed. In this way, the number
of features (variables) was reduced from 1 544 to
14. In the next step, the remaining variables were
manually inspected, in order to select the most sig-
nificant ones and to create an adequate statistical
model. Out of the remaining 14 variables, 11 vari-
ables (with the highest VIP scores) were selected
for the final statistical model. PCA and PLS-DA
score plots for the final model are illustrated in Fig-
ure 3A and B. The performance of the final model

was characterised by the following parameters: R>
(cum) = 92%; Q? (cum) = 90%, which corresponds
to a very good model. The model was validated by
a permutation test with 100 permutations. The plot
for the permutation test is presented in Figure 4A—C.
The intercepts were as follows: Pinot Gris, R? =
(0.0, 0.0483), Q% = (0.0, —0.286); Riesling, R* = (0.0,
0.0231), Q% = (0.0, —0.28); Roter Traminer, R? = (0.0,
0.0236), Q% = (0.0, —0.253).

In order to obtain models accompanied with even
higher R? (cum) and Q* (cum) parameters (capable
of better sample classification), statistical models
comparing only two wine varieties (binary models)
were also constructed. Their PLS-DA cross-validation
results are summarised in Table 2. The same data han-
dling procedure was applied for ESI- data. The results

(A) [l Pinot gris (B) [l Pinot gris
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Figure 3. PCA (A) and PLS-DA (B) score plots showing classification of wine samples in ESI+

red — Pinot Gris; green — Riesling; blue — Roter Traminer
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of cross-validation of all negative ionisation-based
models are also summarised in Table 2.

The most important markers for varietal clas-
sification were: Riesling — m/z = 327.0694,
RT = 4.46 min, ESI+; m/z = 598.2102, RT = 6.06, ESI+,
Roter Traminer — m/z = 485.1973, RT = 7.80 min,
ESI+; m/z = 353.1554, RT = 8.02 min, ESI+, Pinot
Gris — m/z = 449.1770, RT = 6.18, ESI+.

authentication model in ESI+: Pinot Gris (A), Riesling (B),
and Roter Traminer (C)

CONCLUSIONS

The presented pilot study performed on authentic
white wines produced in the Czech Republic has
demonstrated that the metabolomic fingerprinting
procedure based on ethyl acetate sample extraction,
followed with U-HPLC-HRMS/MS analysis and
multivariate data processing (PCA and PLS-DA),

Table 2. Summarised cross-validation results of all PLS-DA statistical models

Number Ionisation Number R? Q? - Permutation test intercepts
of groups mode of variables ™ (cym) (%) Varieties R2 Q?
Pinot Gris 0.0, 0.0483 0.0, —0.286
ESI+ 11 92 90 Riesling 0.0, 0.0231 0.0, -0.28
Roter Traminer 0.0, 0.0236 0.0, —0.253
’ Pinot Gris 0.0,0.11 0.0, —0.265
ESI- 15 87 84 Riesling 0.0, 0.0773 0.0, —0.282
Roter Traminer 0.0, 0.0917 0.0, —0.266
ESI+ 12 96 92 Roter Traminer x Pinot Gris 0.0, 0.2 0.0, -0.193
ESI+ 10 95 91 Roter Traminer x Riesling 0.0, 0.204 0.0, -0.192
) ESI+ 12 95 90 Riesling x Pinot Gris 0.0, 0.189 0.0, -0.211
ESI- 14 93 87 Roter Traminer x Pinot Gris 0.0, 0.222 0.0, -0.278
ESI- 13 95 87 Roter Traminer x Riesling 0.0,0.218 0.0, —0.2
ESI- 15 94 86 Riesling x Pinot Gris 0.0, 0.299 0.0, -0.206

244


https://www.agriculturejournals.cz/web/cjfs/

Czech Journal of Food Sciences, 37, 2019 (3): 239-245

Food Analysis, Food Quality and Nutrition

https://doi.org/10.17221/82/2019-CJFS

is a promising tool for recognition of grape varie-
ties used for wine production. Statistical models
constructed using the data generated in ESI positive
ionisation mode provided very good classification
power; superior classification power being obtained
for binary models.

To accommodate all variabilities and to obtain
even more robust classification models, incorpora-
tion of wines from consecutive harvest years and
different regions would be needed.
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