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Abstract: In 2008, the European Commission highlighted the risk of wine mislabelling regarding the geographical 
origin and varietal identification. While analytical methods for the identification of wine by geographical origin exist, 
a reliable strategy for authentication of wine variety is still missing. Here, we investigate the suitability of the meta-
bolomic fingerprinting of ethyl acetate wine extracts, using ultra-high-performance liquid chromatography coupled 
to high-resolution tandem mass spectrometry. In total, 43 white wine samples (three varieties) were analysed within 
our study. The generated data were processed by principal component analysis and then by partial least squares 
discriminant analysis. The resulting statistical models were validated and assessed according to their R2 (cum) and 
Q2 (cum) parameters. The most promising models were based on positive ionisation data, enabling successful clas-
sification of 92% of wine samples.

Keywords: authentication; chemometrics; metabolomics; U-HPLC-HRMS/MS; wine variety

Because of its high commercial value and the large 
volumes produced, wine is a commodity potentially 
subjected to fraud and mislabelling (Villano et al. 
2017). Preventing this problem is of high concern 
in the European Union, which is the world’s leading 
wine producer (European Commission 2019; available 
at https://ec.europa.eu/agriculture/wine/statistics_
en). The price of wine is determined by its quality, 
which is, in turn, influenced by a number of factors, 
such as grape growing region, oenological practice, 
grape variety (or varieties), wine-making techniques, 
age, and year of vintage (Alanon et al. 2015). On 
this account, it is a legal requirement that wine label-
ling accurately reflects such information. For char-
acterisation of basic wine quality parameters, such 
as content of alcohol, sugars, acids, etc., standardised 
methods have been in routine use. In addition, pro-
cedures enabling the detection of various fraudulent 

practices e.g. dilution with cheaper products such 
as fruit juices, or the addition of undeclared colour-
ants, sweeteners or aroma (Geana et al. 2016), have 
become available in specialised laboratories.

In 2008, the European Commission drew attention 
to the growing risk of wine mislabelling, particularly 
regarding geographical origin, and grape variety. 
As a result, the demand for reliable analytical strate-
gies applicable to the authentication of these wine 
parameters has become urgent (European Commis-
sion 2019; available at https://ec.europa.eu/jrc/en/
research-topic/food-authenticity-and-quality).

As regards authentication of wine according to its ge-
ographical origin, standardised approaches based 
on stable isotope ratio analysis (Camin et al. 2015; 
Fan et al. 2018) and/or trace element measurement 
(Fan et al. 2018) are currently commonly employed. 
On the contrary, discrimination of wine according to 
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the grape variety used for production still remains 
a challenging task, although a number of studies aimed 
at varietal authentication have been performed in the 
recent decade. In some of them, proton nuclear mag-
netic resonance was employed (Godelmann et al. 
2013). However, chromatography coupled with mass 
spectrometry was the most common method used. 
While discrimination based on volatiles fingerprint-
ing was reported in only a few studies (Ziolkowska 
et al. 2016), liquid chromatography coupled with 
high-resolution mass spectrometry (HPLC-HRMS) 
represented the dominating technique used for this 
purpose. The overview of wine sets tested by HPLC-
HRMS and the outcome of chemometric analysis are 
presented in Table 1. As shown here, many different 
discriminatory markers have been identified and used 
to build statistical models for classification of wine 
categories differing in grape variety. It is worth noting 
that most of the studies were focused on red wines 
only. As mostly white wines are produced in the Czech 
Republic, we focused on this category. Riesling, Pinot 
Gris, and Roter Traminer representing the group of 
10 most popular white wine varieties in the Czech 
Republic were involved in the authentication study.

MATERIAL AND METHODS

Chemicals and samples. HPLC grade methanol 
was purchased from Merck and HPLC grade ethyl 
acetate from Fluka Analytical. Deionised water was 
obtained from a Milli-Q purification system supplied 
by Merck. Mobile phase additives formic acid and 
ammonium formate (purity ≥ 98%) were purchased 
from Sigma-Aldrich.

Monovarietal commercial bottled white wines (in to-
tal 43) were purchased directly from winemakers. 
The samples represented wines of Czech geographic 
origin, produced by different winemakers, from 
different grape varieties: Riesling (n = 14), Pinot 
Gris (n = 17) and Roter Traminer (n = 12); and vin-
tages (2013 to 2015, individual years were as much 
as equally represented in each variety group); thus, 
a very variable sample set was obtained.

Sample preparation .  Four mililiters aliquot 
of the sample was transferred into a 15-ml plastic 
cuvette. In the next step, 4 ml of water acidified with 
formic acid (pH 2) and 4 ml of ethyl acetate were 
added, the cuvette was intensively shaken for 3 min 
and then centrifuged at 10 000 rpm for 5 min at 5°C. 
A 3-ml aliquot of the upper phase was recovered 

and evaporated to dryness under a gentle stream 
of nitrogen. The residue was reconstituted to a final 
volume of 500 μl with a mixture of methanol and 
water (50:50, v/v). In this way, the samples were six- 
time pre-concentrated. At the same time, a quality 
control sample (QC) was obtained by the mixing 
of equal volumes of all the tested samples. Until 
U-HPLC-HRMS/MS analysis, all extracts were stored 
in the freezer at –18°C.

Instrumental conditions. For non-target anal-
ysis, the Dionex UltiMate 3000 RS U-HPLC sys-
tem (Thermo Fisher Scientif ic ,  USA) coupled 
to the quadrupole time-of-flight (QTOF) SCIEX 
TripleTOF® 6600 mass spectrometer (AB SCIEX, 
Canada) was used.

Chromatographic separation was performed us-
ing HSS T3 column (1.8-μm, 2.1 mm × 100 mm; 
Waters). The mobile phases consisted of (A) 5 mM 
ammonium formate and 0.1% formic acid in Mil-
li-Q water and (B) 5 mM ammonium formate and 
0.1% formic acid in methanol. For both polarities, 
the elution multistep gradient was used as follows: 
0.0 min (95% A, flow 0.40 ml/min), from 0 to 1 min 
(95% A, flow 0.40 ml/min), from 1 to 11 min (0% A, 
flow 0.55 ml/min); from 11 to 12 min (0% A, flow 
0.60 ml/min); from 12 to 12.1 min (95% A, flow 
0.40 ml/min); from 12.1 to 14 min (95% A, flow 
0.40 ml/min). The column was kept at a temperature 
of 45°C. The sample injection volume was set at 4 µl.

The TripleTOF instrument was equipped with 
a DuoSpray™ ion source. The instrument was operated 
either in positive (ESI+) or negative mode (ESI–); 
parameter settings used for the measurement were: 
capillary voltage, + 5.0 kV (ESI+) and –4.5 kV (ESI–); 
nebuliser pressure: 50 psi, drying gas pressure: 50 psi, 
curtain gas pressure: 35 psi, source temperature: 
480°C; and declustering potential 80 V.

To collect MS and MS/MS spectra, full mass 
scan (TOF MS) and information-dependent acqui-
sition (IDA) methods were simultaneously used. 
The TOF MS spectra were acquired in the m/z range 
100–1200 at an acquisition rate of 1.5 spectra s−1 
(periodic cycle time 0.65 s), and the product ion 
(PI) spectra were acquired in the m/z range 50–
1200 at an acquisition rate of 1.5 spectra s−1 (periodic 
cycle time 0.65 s). The collision energy was of 35 V 
with the spread of ± 15 V. In order to achieve the 
highest mass accuracy throughout the measurement, 
an automatic calibration was regularly performed 
(every 10 samples) by the calibration delivery system 
(CDS, APCI calibration solution). In order to avoid 

https://www.agriculturejournals.cz/web/cjfs/


241

Czech Journal of Food Sciences, 37, 2019 (3): 239–245	 Food Analysis, Food Quality and Nutrition

https://doi.org/10.17221/82/2019-CJFS

systematic bias due to analytical variation, the in-
batch order of all samples analysed was random and 
the QC sample was analysed at regular intervals 
through the analysis (every 10 wine samples).

The instrument was controlled by Analyst 1.7.1 TF 
(AB SCIEX, Canada) and the qualitative analysis was 
performed using PeakView 2.2 software (AB SCIEX, 
Canada).

Repeatability assessment. Based on the repeated 
measurement (n = 10) of the QC sample, the re-
peatability was determined as a relative standard 
deviation (RSD) of the response for 10 ions (com-
pounds) randomly selected throughout the whole 
range of retention times. The RSD values ranged 
between 2–10%.

Data processing and statistical analysis. For data 
processing, MarkerView 1.3.1 software (AB SCIEX) 
was used. As a starting point, two automated algo-
rithms, the first one for peak finding and the second 
one for retention time (RT) and m/z alignment, were 
applied. Peak detection parameters were set to a mini-
mum peak width of 0.02 Da, a noise threshold of 
10 and subtraction multiple factor of 1.5. The param-
eters used for RT and m/z alignment were as follows: 
RT range 0–12; m/z 100–1200, RT tolerance 0.2 min; 
mass tolerance 0.03 Da. In this way, two separate data 
matrices (one for ESI+ and one for ESI–) consist-
ing of lists of features were obtained. Subsequently, 
total area sum normalisation was performed for 
each sample and the data were pre-processed using 
Pareto scaling. Finally, to obtain the first overview 
of the data structure, principal component analysis 
(PCA) was performed.

Simultaneously, the data were exported into SIMCA 
13.0 software (Umetrics), where PCA and a partial 
least squares discriminant analysis (PLS-DA) were 
performed. Prior to the actual PCA and PLS-DA, 
the data were log transformed (to lower the data 
skewness) and Pareto-scaled. The most prominent 
variables for the statistical model building were 
selected, based on the variable importance in pro-
jection (VIP) plot.

The chemometric models obtained were accom-
panied with the R2 (cumulative) and Q2 (cumulative) 
parameters, which were used to determine the valid-
ity of the models. R2 (cum) indicates the variation 
described by all components in the model, and Q2 
(cum) is a measure of how accurately the model can 
predict class membership. Both parameters were 
calculated by a seven-round internal cross-validation 
of the data, using a default option of SIMCA. R2 (cum) 

and Q2 (cum) values higher than 0.5 indicate good 
quality of the model; values close to 1 then indicate 
an excellent PLS-DA model (Triba et al. 2015). 
For the validation of models, a permutation test with 
100 permutations was used.

RESULTS AND DISCUSSION

In this study, the experience obtained in our pre-
vious research focused on the critical assessment 
of HRMS for food authentication was employed. 
Nevertheless, careful tuning of sample analysis had 
to be performed in the first phase. Much attention 
was also paid to the processing of the generated 
data, because it is a critical step in any fingerprinting 
strategy (Han et al. 2017). In the paragraphs below, 
the strategy employed in this pilot study is introduced.

U-HPLC-HRMS/MS metabolomics fingerprinting 
method. Like several other similar studies concerned 
with varietal origin-based wine authentication (Ta-
ble 1), the reversed phase HPLC-QTOF-MS technique 
was used for non-target analysis of wine metabolome 
components. As shown in Table 1, most of the dif-
ferentiating markers were secondary metabolites, 
such as polyphenols, which is not surprising – red 
wines are richer in these compounds because they 
are made using the entire grape (skin and seeds 
included), while white wines, on which this study 
is  focused, are produced by using only the free-
running grape juice. To pre-concentrate these impor-
tant secondary metabolites, ethyl acetate extraction 
of acidified wine samples was performed. When 
comparing direct injection of wine with the analysis 
of organic extract, up to 20-times higher signal in-
tensities of some phenolic compounds (e.g. catechin 
or fertaric acid) were obtained, probably not only 
due to the injection of higher matrix equivalent, but 
also to a less intensive matrix suppression, as most 
polar metabolites are transferred into the organic 
extract in a limited amount.

Figure 1 shows an example of the total ion chro-
matogram of a wine sample. As can be seen here, 
a number of compounds were detectable in both 
ionisation modes. Nevertheless, to assess the clas-
sification potential of these fingerprints, multivariate 
statistics were employed for data processing.

Chemometric analysis. Chemometric analysis 
of generated data is always a critical step in authen-
tication based on non-target screening. Raw data 
files obtained by the analysis of 43 samples were 
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processed by MarkerView software. After automated 
peak finding and retention time (RT) and m/z align-
ment, two separate data matrices were obtained. ESI+ 
matrix contained 2 096 features and ESI– contained 
1 045 features. To remove signal redundancy, all 
isotopic peaks and the background peaks originated 
from blank samples were excluded. After this step, 
reduced data matrices contained 1729 features (ESI+) 
and 703 features (ESI–). Subsequently, to obtain 
a first overview of the data structure, PCA was per-
formed (Figure 2A and B). Data points (samples) are 
coloured according to the variety of the respective 
wine samples. In both ionisation polarities, samples 
were significantly mixed (regarding wine variety). 
It was therefore necessary to proceed deeper within 
the data processing. For this purpose, data matri-
ces were exported into the SIMCA program. The 
robustness of  the analytical procedure was con-
firmed by the tight clustering of the QC samples 
(Figure 2A and B).

In the SIMCA program, both data matrices were 
log-transformed and Pareto-scaled. Pre-processed 
data were filtered using VIP plot. In the VIP plot, the 
variables are ordered according to their VIP scores. 
The higher the VIP score of a variable is, the higher 
the effect on class separation the variable has (Xi et 
al. 2014). In general, if the VIP score is higher than 
1, the variable might be considered as important. 
In all the presented models, a high amount (hun-
dreds) of variables reached a VIP score of 1 or higher. 
Nevertheless, statistical models with a high ratio 
of  ‘number of variables/number of samples’ are 
more prone to be over-fitted (Xi et al. 2014). There-
fore, the numbers of the variables in all our models 
were reduced (only variables with the highest VIP 
score were used). Therefore, the ratios of ‘number Ta
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Figure 1. Pinot Gris ESI+ (blue) and ESI– (pink) total ion 
chromatograms
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of variables/number of samples’ were lower than 1. 
Selected variables were subsequently used to build 
PLS-DA models.

In the case of ESI+ data, the VIP threshold was 
set to 3 (considering the abovementioned criteria). 
Therefore, only variables with VIP scores higher than 
3 were further processed. In this way, the number 
of features (variables) was reduced from 1 544 to 
14. In the next step, the remaining variables were 
manually inspected, in order to select the most sig-
nificant ones and to create an adequate statistical 
model. Out of the remaining 14 variables, 11 vari-
ables (with the highest VIP scores) were selected 
for the final statistical model. PCA and PLS-DA 
score plots for the final model are illustrated in Fig-
ure 3A and B. The performance of the final model 

was characterised by the following parameters: R2 
(cum) = 92%; Q2 (cum) = 90%, which corresponds 
to a very good model. The model was validated by 
a permutation test with 100 permutations. The plot 
for the permutation test is presented in Figure 4A–C. 
The intercepts were as follows: Pinot Gris, R2 = 
(0.0, 0.0483), Q2 = (0.0, –0.286); Riesling, R2 = (0.0, 
0.0231), Q2 = (0.0, –0.28); Roter Traminer, R2 = (0.0, 
0.0236), Q2 = (0.0, –0.253).

In order to obtain models accompanied with even 
higher R2 (cum) and Q2 (cum) parameters (capable 
of better sample classification), statistical models 
comparing only two wine varieties (binary models) 
were also constructed. Their PLS-DA cross-validation 
results are summarised in Table 2. The same data han-
dling procedure was applied for ESI– data. The results 

Figure 2. PCA score plots distribution of wine samples and tight clustering of QC sample repeated measurements 
(black) in ESI+ (A) and ESI– (B)
red – Pinot Gris; green – Riesling; blue – Roter Traminer

(A) (B)

Figure 3. PCA (A) and PLS-DA (B) score plots showing classification of wine samples in ESI+
red – Pinot Gris; green – Riesling; blue – Roter Traminer
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of cross-validation of all negative ionisation-based 
models are also summarised in Table 2.

The most important markers for varietal clas-
s i f icat ion were :  R ies l ing  –  m/z  =  327 .0694, 
RT = 4.46 min, ESI+; m/z = 598.2102, RT = 6.06, ESI+, 
Roter Traminer – m/z = 485.1973, RT = 7.80 min, 
ESI+; m/z = 353.1554, RT = 8.02 min, ESI+, Pinot 
Gris – m/z = 449.1770, RT = 6.18, ESI+.

CONCLUSIONS

The presented pilot study performed on authentic 
white wines produced in the Czech Republic has 
demonstrated that the metabolomic fingerprinting 
procedure based on ethyl acetate sample extraction, 
followed with U-HPLC–HRMS/MS analysis and 
multivariate data processing (PCA and PLS-DA), 

Figure 4. A permutation test plots for PLS-DA-based wine 
authentication model in ESI+: Pinot Gris (A), Riesling (B), 
and Roter Traminer (C)

Table 2. Summarised cross-validation results of all PLS-DA statistical models

Number 
of groups

Ionisation 
mode

Number 
of variables

R2 Q2
Varieties

Permutation test intercepts
R2 Q2(cum) (%)

3

ESI+ 11 92 90
Pinot Gris 0.0, 0.0483 0.0, –0.286

Riesling 0.0, 0.0231 0.0, –0.28
Roter Traminer 0.0, 0.0236 0.0, –0.253

ESI– 15 87 84
Pinot Gris 0.0, 0.11 0.0, –0.265

Riesling 0.0, 0.0773 0.0, –0.282
Roter Traminer 0.0, 0.0917 0.0, –0.266

2

ESI+ 12 96 92 Roter Traminer × Pinot Gris 0.0, 0.2 0.0, –0.193
ESI+ 10 95 91 Roter Traminer × Riesling 0.0, 0.204 0.0, –0.192
ESI+ 12 95 90 Riesling × Pinot Gris 0.0, 0.189 0.0, –0.211
ESI– 14 93 87 Roter Traminer × Pinot Gris 0.0, 0.222 0.0, –0.278
ESI– 13 95 87 Roter Traminer × Riesling 0.0, 0.218 0.0, –0.2
ESI– 15 94 86 Riesling × Pinot Gris 0.0, 0.299 0.0, –0.206

0.8

0.6

0.4

0.2

0

–0.2

–0.4

0               0.2             0.4              0.6             0.8               1
100 permutations 2 components

0               0.2             0.4              0.6             0.8               1

(A) (B)

(C)

https://www.agriculturejournals.cz/web/cjfs/


245

Czech Journal of Food Sciences, 37, 2019 (3): 239–245	 Food Analysis, Food Quality and Nutrition

https://doi.org/10.17221/82/2019-CJFS

is a promising tool for recognition of grape varie-
ties used for wine production. Statistical models 
constructed using the data generated in ESI positive 
ionisation mode provided very good classification 
power; superior classification power being obtained 
for binary models.

To accommodate all variabilities and to obtain 
even more robust classification models, incorpora-
tion of wines from consecutive harvest years and 
different regions would be needed.
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