The $^{18}{\rm O}/^{16}{\rm O}$ Ratio of Retail Moravian Wines from the Czech Republic in Comparison with European Wines

František BUZEK*, Bohuslava ČEJKOVÁ, Ivana JAČKOVÁ and Zdeňka LNĚNIČKOVÁ

Czech Geological Survey, Prague, Czech Republic *Corresponding author: frantisek.buzek@geology.cz

Abstract

Buzek F., Čejková B., Jačková I., Lněničková Z. (2017): The ¹⁸O/¹⁶O ratio of retail Moravian wines from the Czech Republic in comparison with European wines. Czech J. Food Sci., 35: 200–207.

About 50 samples of retail Czech wines from the South of Moravia (vintage years 2008 to 2015) were measured for δ^{18} O values in wine water together with more than 60 European wines. The aim of the study was to compare Moravian wines (not measured for δ^{18} O up to date) with regional European wines and published data from the European wine databanks. The observed variability of δ^{18} O values with vintage year corresponds to the variability of German wines from the Rhine region. We did not observe any significant admixture of must from other regions. The method of ¹⁸O measurement appears to be very sensitive to small differences in the climate of the region (comparison of South Moravia and the near Malé Karpaty region).

Keywords: ¹⁸O isotope composition; water in wine; South Moravian wine region; Czech wines; EU wines

In 1990, the EU decided to install a system of data banks for all wine-producing countries within the EU (EU Regulation 2676/90) to protect and control the authenticity of European wines. The analysis of stable isotopes as genuine markers of wine origin becomes an important part of the authentication process. Determination of the site-specific D/H ratio in wine ethanol by NMR was the first officially adopted stable isotope method (MARTIN et al. 1983). In subsequent years, further applications of the stable isotope method were adopted $(^{13}C/^{12}C)$ values of ethanol, $^{18}O/^{16}O$ in wine water). Finally, all these methods were recommended to detect fraud in wine production (ECR 1990; CEN 1996; OIV 2012). ²H/¹H and ¹³C/¹²C values of ethanol are used to detect the addition of exogenous sugar before or during the fermentation process (DORDEVIC et al. 2013). Beet and cane sugar, the two main additives, have different isotope ratios in comparison with wine must. ¹⁸O/¹⁶O in wine water is used to detect

the addition of water in must. Tap or spring water has a lower ¹⁸O concentration than the original grape juice (Guyon *et al.* 2006).

The European wine databank (2004) collects more than 1400 samples of grapes annually according to wine regions and production (France or Italy 400 samples, Czech Republic 20 samples). The databank serves quality control purposes, and every member state has access to its own data only (or that of a country of possible import). Aside from this official databank, a number of studies were published on stable isotope data with respect to various phenomena. These data can be used for the comparison and interpretation of stable isotope patterns in selected wines. We analysed more than 50 samples of Czech production (South Moravian region vintage 2008-2015) and another 60 samples produced by European or other countries to study the variation of ¹⁸O/¹⁶O ratio in wine water. Up to now, no ¹⁸O data have been published from the area,

Supported by the Czech Geological Survey, Project of the laboratory of beverage analysis.

and a comparison with European production (both published and directly measured data) would be interesting and useful for future analyses.

MATERIAL AND METHODS

Wine samples. Only wines labelled as PDO (protected designation of origin) (AOC in France, DOC in Italy) were considered for testing. According to the European Community trademark law (No. 1493/1999), wine to be considered as a 'quality wine psr' must be produced in a specified region. Some foreign wines were available only as Protected Geographical Region (PGR, IGP in France). Table wines or wines from a tank were measured occasionally but not considered in the study.

Methods. The original method from Epstein and MAYEDA (1953) using the equilibration reaction between CO₂ and water for the measurement of δ^{18} O in water was modified for must and wine measurements (ECR 1990; CEN 1996; ECR 2009). This technique is a standard method for ¹⁸O/¹⁶O equilibration that utilises the GasBench II periphery together with the isotope ratio mass spectrometer Delta V or Delta Advantage (all Thermo Fisher Scientific, USA). A helium mixture with 0.4% CO2 is equilibrated for isotope exchange with water in wine or some other solution at room temperature for about 20 hours. After equilibration, the gas above the sample is measured against CO_2 equilibrated with the international reference materials (Vienna Standard Mean Ocean Water - V-SMOW2) and related to internal references. δ^{18} O is calculated according to Eq.1:

$$\delta^{18}O\text{ (\%)} = \frac{\binom{18}{\text{O}}/^{16}O)_{\text{sample}} - \binom{18}{\text{O}}/^{16}O)_{\text{standard}}}{\binom{18}{\text{O}}/^{16}O)_{\text{standard}}} \times 1000 \text{ (1)}$$

where:
$$\binom{18}{16}$$
O $\binom{16}{16}$ O $\binom{18}{16}$ O $\binom{16}{16}$ O $\binom{16}{16}$ O $\binom{18}{16}$

External reproducibility of measurement is better than 0.1%. Stable Isotope Laboratory of the Czech Geological Survey participates regularly in International Water Isotope Inter-Comparison Tests of the International Atomic Energy Agency – last time in 2016 (WICO 2016).

The usual values of $\delta^{18}O$ in wines range from -3 to +2 for Central Europe and from -1 to +7 for Southern Europe (Christoph *et al.* 2015). For comparison, tap water $\delta^{18}O$ values in Central Europe range from -10 to -9%; those in Southern Europe are about -5%.

As isotopic composition is the molecular property of monitored water, the simple mass balance is valid for, multiplied by the total volume (V) of water in the wine sample:

$$\delta^{18}O_{tot} \times V_{tot} = \delta^{18}O_{wine} \times V_{wine} + \delta^{18}O_{water} \times V_{water}$$
 (2)

where: tot – total mixture; wine and water to wine and admixed water

Theory. The distribution of isotopes of bioelements $(^{13}\text{C}/^{12}\text{C}, ^{2}\text{H}/^{1}\text{H}, \text{ or } ^{18}\text{O}/^{16}\text{O})$ in sugar, organic acids, water, or fermented components such as ethanol is controlled by fractionation processes. The fractionation of oxygen isotopes results in the typical ¹⁸O/¹⁶O isotope ratio for a given year of vintage or geographic origin, which can be used further for the comparison of wines. Water itself changes the ¹⁸O/¹⁶O ratio during evaporation and condensation (depletion with evaporation, enrichment during condensation, depletion of precipitation with increasing latitude, enrichment with increasing temperature, less depletion with decreasing latitude, etc.). Generally, precipitation at a given location generates groundwater and soil water of a typical δ^{18} O value, which is taken up by the roots of the vine and subsequently transported to the leaves. This part of water supply is without any significant isotope fractionation (White 1989). However, δ^{18} O is higher in grape (enriched with ¹⁸O) as compared to soil water because of enrichment during evapotranspiration in leaves and grape skin as well as exchange with atmospheric vapour (Tardaguila et al. 1997; Rossmann et al. 1999). Final changes in δ^{18} O of grape water occur in the period between veraison (berries start to change colour) and harvest (Rossmann et al. 1999). Climatic conditions during the harvest period are most important. The dry and hot environment of the end of summer produces wines with relatively stable and positive δ^{18} O values (e.g., +1 to +8%). Later harvest (September or even October) in the higher latitude regions (north of France or Italy, Central Europe, or Germany) takes place at lower temperatures, with higher air humidity and raining, which shifts δ^{18} O of the must to variable and frequently even negative values (+1 to -4%). The fermentation process does not change the δ^{18} O value significantly: must and wine differ only 0.2% or less (Rossmann et al. 1999). Generally, any addition of compounds with different ¹⁸O/¹⁶O ratio (added sugar, bentonites, etc.) can change the δ^{18} O value of must according to Eq. 2. But amounts of such additives are too small to change

Table 1. The $^{18}\mathrm{O}/^{16}\mathrm{O}$ ratio of retail wines from the Czech Republic and European countries

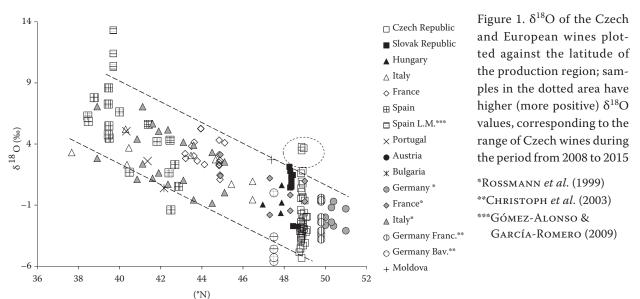
Country of origin	Year	Region	Producer	Variety	δ ¹⁸ O (‰)
	2008	Mikulov, Sedlec	Roztoky	white Burgundy	-1.4
	2009	Mikulov, Horní Věstonice Mikulov Mikulov, Dolní Dunajovice	Wine pod Martinkou Wine Dietrichstein Wine Valtice	Riesling Riesling Aurelius	0.4 2.4 0.0
	2010	Mikulov, Perná	Vinselekt Michlovský	Chardonnay	7.8
	2011	Mikulov, Popice Mikulov, Pouzdřany	Wine maker Tomáš Krist Wine Kolby	Pálava blue Portugaise	-2.1 1.6
	2012	Mikulov, Novosedly Mikulov, Dolní Dunajovice Mikulov, Valtice	Wine Ludwig Mikrosvín Mikulov Valtice wine school	Neuburger Chardonnay Vetltliner	0.4 0.1 -2.4
	2013	Mikulov, Popice Mikulov, Valtice Mikulov, Popice	Wine Gotberg Venerice Wine Gotberg	red Traminer BlauFrankish Pálava	-2.7 -4.9 -4.3
		Mikulov, Novosedly Mikulov Mikulov, Popice	Wine Ludwig Wine Dietrichstein Wine Gotberg	white Burgundy white Burgundy red Traminer	-2.5 -3.8 -2.5
	2014	Mikulov Mikulov, Bavory Mikulov Mikulov, Valtice Mikulov	Wine Palavín Víno Mikulov Motýl BlacQin	red Burgundy rose Merlot rosé BlauFrankish Chardonnay Veltliner	-1.4 -3.7 -3.7 -3.6 -2.9
, o	2008	Slovácko, Hovorany Slovácko, Čejč	Vinselekt Michlovský	Chardonnay Riesling	$3.7 \\ -0.4$
ubli	2012	Slovácko, Milotice	Wine Babíček, Vacenovský B/V	BlauFrankish	-1.6
Czech Republic	2013	Slovácko, Tvrdonice Slovácko, Hýsly Slovácko, Bzenec	Wine JanBalga Solen U dvou lip Chateau Bzenec	red Traminer red Traminer Chardonnay	-3.1 -4.1 -2.9
	2014	Slovácko, Prušánky Slovácko, Bzenec	Wine Košut Wine P. Bunža	white Burgundy red Burgundy rose	-3.9 -3.0
	2015	Slovácko, Blatnice		blue Burgundy	-3.5
	2008	V. Pavlovice V. Pavlovice, Boleradice	Ludwig, Bořetice	red Traminer Riesling	$-1.3 \\ 1.3$
	2011	V. Pavlovice V. Pavlovice, V. Bílovice	Wine maker Kubik Habánské sklepy	Merlot barique Riesling	$ \begin{array}{r} 1.8 \\ -0.4 \end{array} $
	2012	V. Pavlovice V. Pavlovice, Rakvice	Wine Baloun Wine Michlovský	Zweigeltrebe André	$-0.4 \\ 0.9$
	2013	V. Pavlovice, Čejkovice	Templars cellars	Riesling	-3.5
	2014	V. Pavlovice, Čejkovice V. Pavlovice, V. Bílovice	Templars cellars Wine Madl	Grey Burgundy Muskat ottonel	-2.8 -3.1
	2015	V. Pavlovice V. Pavlovice	Vinum Vinum	red Burgundy Zweigeltrebe	$0.8 \\ -0.3$
	2013	Znojmo, Dobšice Znojmo, Dolní Kounice Znojmo, Vrbovec	Wine Lahofer Wine Trpělka & Oulehla Pavel Zbojník	white Burgundy white Burgundy Riesling	-5.3 -2.0 -2.9
	2014	Znojmo, Stošíkovice Znojmo, Dolní Kounice Znojmo, Vrbovec Znojmo, Vrbovec	Znovín Regina Coeli, Trpělka & Oulehla Ampelos Znojmo Vinice Hnanice	Riesling Merlot rosé Chardonnay Cabernet Sauvignon	-3.3 -3.5 -4.6 -4.5
	2015	Znojmo, Nové Bránice Znojmo, Dyje	Wine Oulehla Wine Lahofer	BlauFrankish Zweigeltrebe rosé	-3.2 -3.2

Table 1 to be continued

Country of origin	Year	Region	Producer	Variety	δ ¹⁸ O (‰)
Slovak Republic	2011	Svatý Ján	Vinařství Chowianec, Svatý Jur	Cabernet Sauvignon	2.1
	2014	Modra Pezinok	Wine Matyšák	Burgundy BlauFrankish	-2.7 1.8
		Pezinok Modra, Králová	Wine Cech Lalinwine	Leanka Lalinawine, Sylvaner	0.4
	2015	Modra, Hliny Modra, Grefty Modra, Noviny	Vinko Klimko Vinko Klimko Lalinwine	Saint Laurent Muller Turgau white Burgundy	0.6 0.7 1.1
		Modra, Plázle Modra, Grefty Modra	Lalinwine Vinko Klimko Vinko Klimko	Muscat Otonel Muller Turgau Chardonnay	1.3 0.7 0.5
Hungary		BalatonForedi Matra	Szola	Cabernet Sauvignon Muscat Ottonel	-1.0 0.6
Hu	2014	BalatonForedi Eger	Egri Korona Borház kft., Demjén	Veltliner Muscat Ottonel	-0.8 -1.7
	2009	Chianti	San Caseinao Val di pesa Torteza Colli	Chianti	2.9
	2010	Toscana, Poggibonsi	Corte alle Mura	Chianti	3.1
Italy	2013	Salento Garganega, Corte Viola,		Negroamaro, Salento Rosso Bianco di Custoza, Tokaj	3.7 0.8
		Trebliano Dorgali	da Cantina Sociale Dorgali	Cannonau di Sardegna	5.2
	2014	Veneto Codici nero D'Avola		Merlot Negro	0.7 3.3
		Salento, Messapico, SRL in Tuglie – Lecce	Da Agricola Capo Leuca	Negroamaro	2.3
	2015	Cossano Belbo	Canti	Merlot rosé	2.7
	2010	Bordeaux La Chateau Pirouette, Medoc	Global Wines cz	Empereur	2.3
	2011	Massif central		Basalt	4.1
	2013	Narbonne Bordeaux Bordeaux	Les Vignerons de la Méditerranée	Chardonnay Bordeaux (Merlot, Sauvignon) Bordeaux	3.2 1.1 1.5
		Bordeaux Bordeaux	Grand Desir	Bordeaux Medoc	3.1 2.5
France		Ventoux Gironde, Chateau Cardonna, Lahourcarde	Bedoin	Harmonie rose Medoc	2.3 2.7
		Languedoc	Familie Castle	Merlot	3.8
	2014	Vin de la vallee du Rhone		Merlot	5.2
		Fleurs des Templiers	I D.Ch	Bordeaux	2.6
		Languedoc Roussillon	J.P.Chenet	Grenache-Cinsault	3.0
		Bordeaux Marquis Delplanque,	Fernand, Carignan de Bordeaux	Merlot Cabernet Sauvignon Merlot	4.3 2.6
		Costières de Nîmes Bordeaux	SARL VR F33540, Empereur	Merlot Cabernet Sauvignon	2.2

Table 1 to be continued

Country of origin	Year	Region	Producer	Variety	δ ¹⁸ O (‰)
Spain	2007	Marques de Campoblanco		Tempranillo	7.8
	2009	Valencia Valencia	Torre Oria La Emperatriz S.L. Baños de Rioja	Temprenillo 0.6, Cabernet 0.4	4.5 1.6
	2010	Catalonia, Terra Alta Castillo San Simón, Monastrell	Vespral	Cabernet	5.6
			Bodegas	Cabernet	5.8
	2012	Jumila	Bodegas	Alaja Crianza	6.3
		Cosecha, Rioja	Viña Nobile Rioja, Cosecha	Tempranillo	-1.4
		Valencie	Velada	Muscat	5.5
		Navarra		Ravel	0.5
	2014	Campo de Borja		Tempranillo	4.2
		Navarra	Bodegas BraňaVieja S.L.C.	Ravel blanco	4.3
		La Tierra da Castilla	Felix Solis	Cabernet Sauvignon	8.6
		Navarra		Garnacha	2.3
Portu- gal	2014	Douro		Tempranillo	2.6
		Portas Tejo, Regional Tejo		Castelao Aragones	5.1
Aus- tria	2014	Osterreichischer Landwein-Weinland	Weingut Neustifter, Poysdorf	Cuvée Noir/Blauburger/ Merlot	-2.7
Bul- garia	2014	Rose valley		Merlot	0.4
Gru-	2014	Mukuzani	Mukuzami Wine	Saperavi	3.5
Mol- davia	2015	Orhei	Chateau Vartely	Cabernet Sauvignon	2.7


the resulting balance of $^{18}O/^{16}O$ in a measurable way and need not be considered.

RESULTS AND DISCUSSION

Regional 180 variations. The sample measurements are summarised in Table 1 according to the country of origin and vintage year. The δ^{18} O values of European wines are presented in Figure 1, plotted against the latitude of vine cultivation. The figure also contains published values from the wine databanks of Germany, France, Italy, and Spain (Rossmann et al. 1999; ; Gómez-Alonso & García-Romero 2009). Measured δ^{18} O values can be roughly interpreted as an increase in $\delta^{18}O$ with decreasing latitude (i.e., with increasing air temperature and lower precipitation and air humidity) (Figure 1). Further variation for a given location manifests as variation of δ^{18} O with a given vintage year. For these reasons, the EU wine databanks collect samples every year to provide comparison for suspicious samples of the same vintage and origin. Updating the data banks is a laborious task, and comparable samples are not always available. Supplementary methods and models are created to estimate probable δ^{18} O values of wine from certain locations. Models are constructed on meteorological parameters such as relative humidity, mean air temperature, and GIS parameters. Models were tested for American wines from Washington, Oregon, and California (West *et al.* 2007) and German wines from Rhine, Pfalz, and Mosel regions (Hermann & Voerkelius 2008). For the tested years, models offer good quality data for the comparison of local wines using the data banks.

Temporal ¹⁸**O variations**. Samples of Czech wines (open squares in Figure 1) show a significant range of δ^{18} O values in a relatively small area of the South Moravian region. This information is given by the time variation of the vintage (Figure 2).

While in the South of Europe vintage takes place at the dry and relatively warm end of the summer, in Central Europe (or, generally, in regions of higher

latitude) grape harvest takes place in September (even in October) under frequently changing climatic conditions. During the period before harvest, a few days' change of temperature, rain, or fog can dramatically shift the $\delta^{18}O$ values of the must-water and consequently of wine (ROSSMANN et al. 1999). Early harvest under dry and warm conditions produces wine with more positive δ^{18} O values, or very positive values for a very dry region (Figure 1, data from Spain L.M. (La Mancha region)) (TARDAGUILA et al. 1997) may mean that no drying effect is observed for irrigated grapes (GÓMEZ-ALONSO & GARCÍA-Romero 2009). Later harvest produces less positive or even negative δ^{18} O values (). Comparable Slovak wines from the very near Little Carpathian region are systematically enriched with ¹⁸O (Figure 2). These

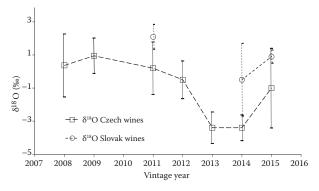


Figure 2. Mean $\delta^{18}O$ values of wine water from the measured Czech wines produced in the period 2008–2015 in the South Moravian region; error bars correspond to 95% confidence intervals as calculated from the measured values for each vintage year; Slovak wines from the near Little Carpathian region are plotted together

data correspond to different microclimatic conditions in both regions: the Little Carpathian region is drier and warmer than the South of Moravia.

We examined Moravian wines for a possible relationship to air temperature, precipitation, and the $^{18}\mathrm{O}$ isotopic composition of precipitation last month before harvest (all data are from the South Moravian region in September) (CHMI 2016) (Figure 3). All plots show expected effects of the $\delta^{18}\mathrm{O}$ values of wine water: a temperature decrease (Figure 3A), extreme precipitation (Figure 3B), and a decrease in $\delta^{18}\mathrm{O}$ of precipitation (Figure 3C).

Because examining the wine water for the addition of water or must of some other origin is a comparative method, it is important to know the range of reliable δ^{18} O values for a given region and vintage. With the known time variation (Figures 2 and 3), we can identify samples with higher δ^{18} O values (dotted area in Figure 1) as possible mixtures of local must with must from regions of lower latitude with higher temperature and evapotranspiration (for example from Moldavia or Romania). Only 15% of grapes from the other region are allowed for PDO. Wines with more negative $\delta^{18}O$ values than corresponds to Figure 2 are likely to contain additional water $(\delta^{18}O \text{ of local tap water varies from } -9 \text{ to } -9.5\%)$. We observe this phenomenon frequently in association with 'pure' fruit juice or must. For example, apples from the 2015 harvest have δ^{18} O values from -2.2 to -2.6% (apple juice has lower variability than grape must), but the retail product has the δ^{18} O value of -5.6 or less. Using Balance Equation 2 and δ^{18} O of −9.5‰ for tap water, we get about 45% of additional water in '100% juice'.

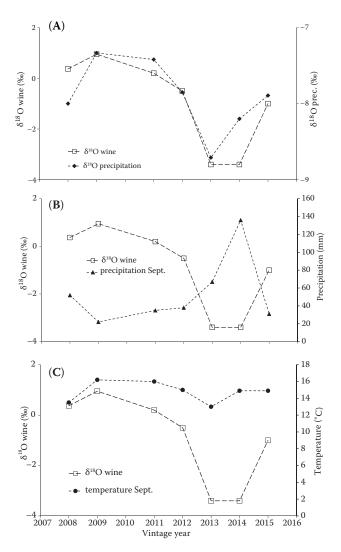


Figure 3. Time plot of mean $\delta^{18}O$ values of the measured Czech from the South Moravian region wines plotted against: (**A**) mean air temperature in September; (**B**) total precipitation in September; (**C**) $\delta^{18}O$ values of accumulated September precipitation

CONCLUSIONS

The wine samples studied from the South of Moravia have $\delta^{18}O$ values corresponding to the must of particular regions and vintage years. The observed dependence of $\delta^{18}O$ values on temperature and precipitation during harvest resembles the data published for German wines from the Rhine region.

A few samples had higher δ^{18} O values (enriched with 18 O) than the observed range for vintage years. This corresponds to the admixture of grape must from warmer or dry regions. In such a case, another isotopic method (D/H NMR) can be used to elucidate the admixture process.

Measurements of $\delta^{18}O$ in wine-water are sensitive to microclimatic effects. Small climate differences between the South of Moravia and the near Little Carpathian region can be differentiated. This supports the necessity of differentiating the wine production regions based on climatic and geographic diversity. Only the systematic collection of musts from the given region can help in the differentiation of admixtures of grapes from other regions.

Acknowledgements. We would like to thank many colleagues and followers for a kind assistance in the collection of reliable wine samples.

References

CEN (1996): Comitee Europeen de Normalization 1996. CEN /TC174 No. 109, (1996). Determination of stable isotope ratio of oxygen (¹⁸O/¹⁶O) of water from fruit juice by isotope ration mass spectrometry. No. 108, 1996. Determination of the stable carbon isotope ratio (¹³C/¹²C) of sugars from fruit juice. No. 110.1996. Determination of the stable hydrogen isotope ratio (²H/¹H) of water from fruit juices – method using Isotope Ratio Mass Spectrometry.

CHMI (2016): Czech Hydrometeorological Institut. Available at www.chmi.cz – historical records.

Christoph N., Rossmann A., Voerkelius S. (2003): Possibilities and limitations of wine authentication using stable isotope and meteorological data, data banks and statistical tests. Part 1: wines from franconia and lake constance 1992 to 2001. Mitteilungen Klosterneuburg, 53: 23–40.

Christoph N., Hermann A., Wachter H. (2015): 25 years authentication of wine with stable isotope analysis in the European Union – review and outlook. BIO Web of Conferences, 5, 38th World Congress of Vine and Wine (Part 1), Article No. 02020. doi:10.1051/bioconf/20150502020.

Dordevic N., Camin F., Marianella R.M., Postma G.J., Buydens L.M.C., Wehrens R. (2013): Detecting the addition of sugar and water to wine. Australian Journal of Grape and Wine Research, 19: 324–330.

ECR (1990): European Commission Regulation No 2676/90 determining Community methods for the analysis of wines – Official Journal No L272/64 (SNIF-²H-NMR of ethanol from wine). No. 822/97 amending E.C. Regulation No 2676/90 – Official Journal, L117/10 (¹⁸O/¹⁶O of water in wine). No 440/2003 amending E.C. Regulation No 2676/90-Annex II. Official Journal, L66/15 (¹³C/¹²C of ethanol from wine).

ECR (2009): Commission Regulation (EC) No 606/2009 laying down certain detailed rules for implementing Council

- Regulation (EC) No 479/2008 as regards to the categories of grapevine products, oenological practices and the applicable restrictions.
- Epstein S., Mayeda T. (1953): Variation of 18 O content of waters from natural sources. Geochimica et Cosmochimica Acta, 4: 213–224.
- Gómez-Alonso S., García-Romero E. (2009): Effect of irrigation and variety on oxygen (δ^{18} O) and carbon (δ^{13} C) stable isotope composition of grapes cultivated in a warm climate. Australian Journal of Grape and Wine Research, 16: 283–289.
- Guyon F., Douet C., Colas S., Salagoity M.H., Medina B. (2006): Effects of must concentration techniques on wine isotopic parameters. Journal of Agricultural and Food Chemistry, 54: 9918–9923.
- Hermann A., Voerkelius S. (2008): Meteorological impact on oxygen isotope ratios of german wines. American Journal of Enology and Viticulture, 59: 194–199.
- Martin G.J., Martin M.L., Mabon F., Michon M.J. (1983): A new method for the identification of the origin of ethanol in grain and fruit spirits: high-field quantitative deuterium nuclear magnetic-resonance at the natural abundance level. Journal of Agricultural and Food Chemistry, 31: 311–316.
- OIV (2012): International Organisation of Vine and Wine 2012. Compendium of international methods of wine and must analysis 2012. Vol. 1. Summary of resolutions adopted by the 7th General Assembly of the OIV Zagreb (Croatia 2009). Determination of ¹³C/¹²C isotopic ratio of ethanol (Oeno 17/2001). Determination of the deuterium distribution in ethanol derived from fermentation of grape musts, concentrated grape musts, rectified

- concentrated grape musts and wines by application of nuclear magnetic resonance (SNIF NMR/RMNFINS) (Oeno 426-2011). Method for ¹⁸O/¹⁶O isotope ratio determination of water in wines and must (Oeno 353/2009).
- Rossman A., Reniero F., Moussa I., Schmidt L.-H., Versini G., Merle M.H. (1999): Stable oxygen isotope content of water of EU data-bank wines from Italy, France and Germany. Zeitschrift für Lebensmittel-Untersuchung und -Forschung A, 208: 400–407.
- Tardaguila J., Bertamini M., Reiniero F., Versini G. (1997): Oxygen isotope composition of must-water in grapevine: effects of water deficit and rootstock. Australian Journal of Grape and Wine Research, 3: 84–89.
- West J.B., Ehleringer J.R., Cerling T.E. (2007): Geography and vintage predicted by a novel GIS model of wine δ^{18} O. Journal of Agricultural and Food Chemistry, 55: 7075–7083.
- WICO (2016): International Water Isotope Inter-Comparison Test organized by The Isotope Hydrology Laboratory of the International Atomic Energy Agency (IAEA) in Vienna for water isotope inter-comparison for deuterium (²H) and oxygen isotope (¹⁸O) assays of natural waters, conducted by isotope-ratio mass spectrometry and laser spectrometry methods laboratory token 16234, results excellent and acceptable.
- White J.W.C. (1989): Stable hydrogen isotope ratios in plants: a review of current theory and some potential applications. In: Rundel P.W., Ehleringer J.R., Nagy K.A. (eds): Stable Isotopes in Ecological Research. Ecological Studies, Vol. 68. Heideleberg, Springer Verlag: 142–162.

Received: 2016-05-30

Accepted after corrections: 2017-06-01