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Abstract

Furdikové K., Maky$ové K., Spanik I. (2017): Effect of indigenous S. cerevisiae strains on higher alcohols, volatile
acids, and esters in wine. Czech J. Food Sci., 35: 131-142.

Higher alcohols, volatile fatty acids, and esters are the most important volatiles and their formation is closely related
to yeast strains employed during fermentation. In the present work, the effect of indigenous yeast strains on selected
wine volatiles was examined using a highly sophisticated analytical method — comprehensive two-dimensional gas
chromatography. Results of the statistical analysis revealed that each strain could be characterised and differenti-
ated according to its volatile composition: strain Y2 was characterised by 2-phenylethanol and 1-hexanol, strain Y1
was in close relationship with high amounts of 4-methyl-1-pentanol, iso-amyl alcohol, ethyl 3-hydroxypentanoate
and 3-methylpentanoic acid and strain Y3 was associated with 1-heptanol, cis-3-hexen-1-ol, p-phenylethyl butyrate,
octanoic, and decanoic acids. The selection of an appropriate yeast strain thus represents a critical variable affecting

the analysed volatile compounds (wine flavour) not only in a qualitative but also in a quantitative way.

Keywords: volatile organic compounds; secondary aroma of wine; yeast; comprehensive gas chromatography

One of the most common procedures in a win-
emaking process is controlled fermentation in order
to provide desired qualitative parameters (mainly
flavour) of wine. This is ensured by the employment
of commercially available Saccharomyces cerevisiae
yeast strains. Nevertheless, the competitive char-
acter of the wine market leads to the tendency of
wine producers to look for innovations in fermenta-
tion technologies (FLEET 2008). In recent years, the
study of indigenous (autochthonous) yeast strains
has seemed to be in the scope of scientists. Wines
obtained using such microorganisms are closely
related to a particular geographical region, known

as ‘terroir, and thus are characterised by uniqueness
and originality (CADOT et al. 2012).

Wine flavour (including its odour and taste) is very
complex and consists of a high number of differ-
ent volatile organic compounds (VOCs) of various
chemical and physical properties and concentrations.
Among all of them, volatiles synthesised during fer-
mentation (so called ‘fermentative’ flavour) are meant
to be the most numerous group (STYGER et al. 2011)
and are mainly represented by esters, higher (fusel)
alcohols, and volatile organic acids. Their formation
is directly linked to a particular yeast strain (i.e. its
metabolism) (LAMBRECHTS & PRETORIUS 2000) and
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therefore, each strain produces a different profile of
VOCs even when fermenting the same grape must
(MoLINA et al. 2009).

According to STRIBNY et al. (2015), higher alco-
hols and esters are significant aroma contributors
in alcoholic beverages. In the vast majority, con-
ventional gas chromatography (1D-GC), and in the
last years mainly comprehensive two-dimensional
gas chromatography (GCxGC) has been applied to
examine the composition of wine aroma (i.e. the
profile of volatile organic compounds). The latter
method is preferred because it disposes of several
advantages: (I) enhanced peak capacity, (II) higher
power signal/noise ratio, and thus resolution, and
(III) obtaining of ‘structured’ chromatograms (MUR-
RAY 2012). GCxGC was successfully employed for
studying VOCs in different wines (WELDEGERGIS
etal.2011a).

To the best knowledge of the Authors, there are no
published works about the effect of indigenous yeast
strains on the volatile profile of wines analysed by
LLE-GCxGC-TOF-MS. The aim of the present study
was to obtain a detailed profile of higher alcohols,
volatile acids, and esters in wines to describe the effect
of three indigenous Saccharomyces cerevisiae strains.

MATERIAL AND METHODS

Origin of grapes. In the present work, grapes of
the wine variety Gewurztraminer (clone N20 with
Kober 5BB rootstock) of 2011 vintage were used.
Grapes originated from the production of the Slovak
company from the Middle Slovak vineyard region,
Modry Kamen locality. The natural starting concen-
tration of reducing sugars in pressed grape juice was
250 g/1, and no additional sugar was added. The pH
value of original grape juice was 3.5.

Yeast strains. For the fermentation of Gewur-
ztraminer juice, three indigenous yeast strains of
Saccharomyces cerevisiae var. cerevisiae signed as
Y1,Y2, Y3 were used. All strains were isolated from
grapes in 2010 and originated from the same locality
as the grape used in the experiment. Yeast strains were
previously identified using diagnostic keys (KUrRTz-
MAN & FELL 2000) and taxonomical classification
was verified by PCR. Before the experiment, axenic
S. cerevisiae cultures were characterised also in terms
of their oenological properties and became part of
the collection of microorganisms of the Faculty of
Chemical and Food Technology (Slovak University
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of Technology, Slovakia). Axenic cultures of S. cere-
visiae var. cerevisiae Y1, Y2, Y3 used in this experi-
ment are characterised by low production of volatile
acids, acetaldehyde, succinic acid, and foam; their
osmotolerance is above 45% glucose in the medium
and ethanol tolerance 12.5% (v/v) of ethanol, they
have good sedimentation characteristics and are able
to produce wines with residual sugars.

Yeast starters for grape juice inoculation were
prepared from a yeast strain culture grown aerobi-
cally for 24 h in a 100 ml of liquid medium (20 g/1
glucose, 10 g/l yeast extract; pH 6.5) in a 500 ml
culture flask on an orbital shaker (2 Hz) at 28°C.
After cultivation, the concentration of yeast biomass
was determined by counting in a Biirker chamber.
The calculated volume of biomass was withdrawn
and centrifuged (10 min, 1370 g). Separated biomass
was washed with distilled water, centrifuged again,
and finally added to grape juice.

Winemaking procedure. Destemmed and crushed
Gewurztraminer grapes were macerated for 4 hours
and subsequently pressed. Clarification of pressed
grape juice was performed statically using bentonite
and must gelatine (the product Mostgelatine, Erbsloh,
Germany) (dose 100 g/1). After 12 h, the clarified
juice was treated with gaseous SO, (10 mg/l), filled
into 50 I glass flasks and inoculated by an axenic
yeast strain in the form of liquid yeast starter; the
starting concentration of biomass in grape juice was
10° cells/ml. The main alcoholic fermentation had
proceeded at the temperature of 17°C for 2 weeks.
Then, the young wine was separated from rough yeast
sediments, treated with 502 (80 mg/l), and left for
another month. After the month, wines were racked
again and underwent chemical and sensory analysis.

Basic analysis. Basic oenological parameters as well
as detailed volatile profile of all wines were determined.
Concentrations of reducing sugars were analysed by
the Schoorl method (SCHOORL & REGENBOGEN 1917),
concentration of alcohol and extract pycnometrically
(OIV-MA-AS312-01A, OIV-MA-AS2-03B). Total
volatile acids (expressed as acetic acid) were separated
from the sample by steam distillation and then total
acids (expressed as tartaric acid) were determined by
acid-base titration with 0.1 mol/l KOH (OIV-MA-
AS313-01, OIV-MA-AS313-02).

Extraction and concentration of wine volatiles.
Extraction of volatile compounds from grape juice
and wine samples was performed using liquid-liquid
extraction (LLE) into hexane. 100 ml of wine sample
with the addition of 20 pl of ethanol solution of benzo-
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phenone (internal standard, 1.66 x 1072 g/l)and 2.5 g
of NaCl (p.a., dried at 250°C before use) was placed in
a glass separatory funnel with stopcock. The mixture
was extracted four times with 25 ml aliquots of hexane
(overall 100 ml of hexane) at laboratory temperature.
Collected hexane fractions were mixed, dried over
anhydrous sodium sulphate, and concentrated using
the Kuderna-Danish evaporator. Obtained extracts
were placed in 2 ml volumetric flasks and filled with
hexane to an exact volume of 2 ml.

Gas chromatography. For GC analysis, a Pegasus
IV system consisting of an Agilent 6890N gas chro-
matograph (Agilent Technologies, USA), an MPS II
multipurpose sampler (Gerstel GmbH, Germany), a
TOEF-MS detector (LECO, USA), and a four-jet cryo-
genic modulator was used. For GCxGC analysis, the
following column set was used: a polar 30 m x 0.25 mm
i.d. x 0.25 pum d,DB-FFAP primary column coupled
to a medium-polar 1.39 m x 0.10 mm i.d. x 0.10 um
d;BPX-50 secondary column. Temperature programs
used for separation were: (I) 1% column: initial tem-
perature 40°C kept for 10 min, ramped at 2°C/min
to 220°C kept for 5 min, (II) 2" column: initial tem-
perature 50°C kept for 10 min, ramped at 2°C/min
to 230°C, and held for 5 minutes. Helium (99.996%
purity, Merck) was used as a carrier gas at a constant
flow of 1 ml/minute. Ions in the mass range of m/z
29-400 were acquired at a rate of 100 spectra/second.
1 pl of the concentrated hexane extract of each wine
sample was injected into the GC system.

Data processing. Acquisition control and data
processing were performed automatically using the
LECO ChromaTOF™ software (Version 4.21). Au-
tomated peak finding and spectra deconvolution
with a baseline offset of 0.8 and signal-to-noise ratio
set to the value 50 were used for data treatment.
Individual peaks were identified by a comparison
of retention times and mass spectra with standards
(when available), and data found in the library of
the National Institute of Standards and Technology
(NIST11 Mass Spectra library). Tentative identifi-
cation of volatile organic compounds (VOCs) was
performed only based on the mass spectra com-
parison with NIST11 library (with a minimal match
factor 850). For determination of the experimental
1%t dimension linear temperature programmed reten-
tion index (LTPRI) of each compound, the series of
n-alkanes was analysed under the same conditions.
Experimental LTPRIs (LTPRIEXP) were compared with
LTPRIs of standards (LTPRI_) and/or with reference
LTPRI values (LTPRI,, ) obtained from the NIST

WebBook Chemistry database. A compound was
considered as identified if the difference between
LTPRIQXp and LTPRI_ was less than 20 units. In case
of missing standards, compounds were considered
only tentatively identified based on a comparison of
LTPRIexp with LTPRI, . Relative peak areas of VOCs
identified in samples (4 )
on Equation A = A /A, where: A _— peak area of
identified volatile organic compound; A ; — peak area
of internal standard (benzophenone).

Standards. Standard compounds and n-alkanes used
in the experiment were purchased from Sigma-Aldrich/
Fluka (Germany) in purity of > 95%. Stock solutions of
each standard compound were prepared by dilution in a
solution of methanol (12%, v/v) and tartaric acid (6 g/1)
in MilliQ deionised water and extracted, concentrated,
and analysed in the same way as wine samples.

Statistical analysis. Each analysis was performed
in triplicate. The experimental values of A, of all
Gewurztraminer wines fermented with 3 autoch-
thonous strains of S. cerevisiae were evaluated by
the statistical dispersion method Analysis of Vari-
ance between Groups — ANOVA (STATGRAPHICS
plus for Windows 3.0) and by Principal Component
Analysis - PCA (Statistica® software, StatSoft, USA).

Sensory evaluation of wines. Quality of the aroma
of Gewurztraminer wines fermented with 3 different
strains of S. cerevisiae was evaluated by eight certified
wine tasters in blind sensory evaluation (50 ml wine
poured into ISO XL5 wine taster glasses). Tasters
evaluated positive fruity and flower-like smells as
well as green tones, and possible off-flavours by a
ten-point scale test (zero representing non-existent
and ten representing the extreme value of smell
perception). Intensities of the following attributes
were evaluated: rose, honey, lychee, white flowers,
citruses, yellow fruits, elder flowers, mushrooms,
herbal, and green tones. Aromagrams of individual
wines were constructed based on average values of
means obtained by the evaluation.

were calculated based

RESULTS AND DISCUSSION

Gewurztraminer juice and wines fermented with
three different strains of S. cerevisiae var. cerevisiae
were analysed by methods of basic chemical analy-
sis, gas chromatography (LLE-GCxGC-TOF/MYS),
and sensory analysis to evaluate the influence of the
yeast strain on the profile of higher alcohols, volatile
acids, and esters in wine.
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Table 1. Basic oenological characteristics of Gewiirztraminer wines fermented with autochthonous strains of S. cerevisiae

Strain S. cerevisiae Y1 Y2 Y3
Reducing sugars (g/1) 14.1 £ 0.10 14.7 + 0.06 31.1 £0.12
Ethanol (% v/v) 14.2 £ 0.10 13.9 £ 0.10 11.9 £ 0.06
Total extract (g/1) 33.6 £ 0.20 354 +0.21 56.4 + 0.23
Volatile acids (g/1) 0.31 + 0.01* 0.31 £ 0.01* 0.29 + 0.01*
Total acids (g/1) 4.9 £ 0.06 5.5+ 0.06 5.5+ 0.12
SO, free (mg/1) 34 34 34
SO, total (mg/1) 152 157 153

Data were mean values of triplicate samples (maximum SD + 5%); P < 0.05; *the same characters in the same row correspond

to a not statistically significant difference (P > 0.05)

The results of the basic analysis of wines are shown
in Table 1. The statistical analysis ANOVA performed
for the basic analysis of Gewurztraminer wine sam-
ples showed significant differences (P < 0.05) in all
descriptors except the means of volatile acid con-
centrations which were evaluated as not significantly
different (P > 0.05). All wines contained a higher
concentration of residual sugars and a lower con-
centration of total acids, which is typical of wines
of the Gewurztraminer variety.

Using the above-mentioned gas chromatograph-
ic method, more than 900 VOCs were detected in
analysed Gewurztraminer samples. In wines, 175
VOGC:s in total were identified (tentatively or based
on comparisons with standards). Out of this number,
41 volatiles belonged to esters, 34 to higher alcohols,
and 8 to volatile acids. On the contrary, in grape juice

S. cerevisiae
Y1
—_—-Y2
-==- Y3

Citruses

Yellow fruits

Herbal tones

Figure 1. Aromagrams of Gewurztraminer wines fer-
mented with 3 autochthonous strains of S. cerevisiae

Data were calculated as the arithmetic average of evaluations
done by eight wine tasters; maximum SD + 15%; P < 0.05
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only 56 VOCs in total were identified and out of
them only 17 higher alcohols, 6 esters, and 3 volatile
acids. The remaining VOCs (30 in grape juice and 92
in wines) belonged to groups of terpenoids, furans,
pyrans, carbonyls, volatile phenols, and sulphur
compounds. For the illustration of the wine VOC
profile complexity, higher alcohols, esters, and volatile
acid profiles in wines and juice before fermentation
are presented in Table 2. A comparison of A of
compounds identified in juice and in wines showed
which VOCs are products of yeast metabolism and
which originate naturally from the grape juice (and
are produced by the vine plant).

Higher alcohols. Among all identified higher al-
cohols, C6 and C8 alcohols were the most abundant
in grape juice; the highest A |
2-hexen-1-ol and 1-hexanol. Alcohols with minor
abundance: 1-heptanol, 1-octanol, trans-3-hexen-1-ol,
cis-3-hexen-1-ol, 1-octen-3-o0l, 2-octanol, 3-octanol,
2-heptanol, 2-nonanol, and 2-undecanol bring pre-
dominantly green aroma tones, while higher saturated
alcohols like 1-nonanol, 1-decanol, 1-undecanol, and
2-ethylhexanol are responsible for citrus-like smells.
During fermentation, concentrations of all these fusel
alcohols decreased and the most significant decrease
was observed in 2-hexenol. The highest variance,
according to the yeast strain used for fermentation,
was observed in 1-hexanol. The relative peak area
of this alcohol (responsible for ethereal and fruity
aroma) decreased using S. cerevisiae Y2 from 21.40
to 18.18 compared with 0.40 (Y1) and 1.08 (Y3).

The presence of most fusel alcohols in wine is
bound to the metabolism of yeasts participating in
alcoholic fermentation. Their occurrence and concen-
tration depend on the varietal amino acid profile of
grapes, metabolic activity of fermenting microflora,
and technological conditions (HERNANDEZ-ORTE

in juice was shown by
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et al. 2002). The most abundant higher alcohols in
the studied Gewurztraminer wines were 2-pheny-
lethanol, 3-methylbutanol, 2-methyl-1-propanol,
1-propanol, and 2,3-butandiol. 2-Phenylethanol was
identified in all samples at significantly higher A
than the other identified VOCs. It can be considered

1

as the major yeast produced higher alcohol in tested
wines in spite of the fact that the grape juice also
contained it before fermentation (3.02). S. cerevisiae
produces this rose-scent alcohol by bioconversion
of L-phenylalanine via the Ehrlich pathway and its
production strictly depends on the yeast strain (STARK
et al. 2003). The highest A, of 2-phenylethanol was
confirmed in wine fermented with the autochthonous
strain of S. cerevisiae Y1 (46.0). 2-Phenylethanol is
important since it can support the typical rose-like
aroma of Gewurztraminers.

The second abundant alcohol identified in wine
samples was 3-methylbutanol (iso-amyl alcohol). At
an optimal concentration it brings the typical banana
and pear-like aroma (SWIEGERS et al. 2005; SAMAP-
PITO & BUTKHUP 2010), excessive concentrations
cause the nail polish odour of wines. Precursors of
3-methylbutanol are the amino acids leucine and
valine, but it can be formed also by the metabolism
of pyruvate (SWIEGERS et al. 2005). The highest A |
of 3-methylbutanol reported wine fermented with
S. cerevisiae Y1 (42.4), the lowest with S. cerevisiae
Y3 (14.2). From a sensory point of view, grassy and
green aromas are very important for the final flavour
of each wine. Except of primary aroma alcohols (dis-
cussed previously) this type of smell is represented by
higher alcohols produced by the yeast and detected
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Figure 2. Colour plot of Gewurztramin-
er wine fermented with S. cerevisiae
Y2 obtained by GCxGC-TOF-MS
with the employment of DB-FFAP
(polar) x BPX-50 (mid-polar) column
configuration

The x-axis represents 1°* dimension re-
tention time expressed in min; the y-axis
represents 2" dimension retention time

given in second

in wine samples: 2-pentanol, 3-pentanol, and DL-6-
methyl-5-hepten-2-ol (sulcatol).

Higher alcohols identified in wines fermented with
three different yeast strains underwent statistical
treatment using PCA (Figure 3). The correlation
matrix was calculated in order to discriminate the
variables. Finally, 20 higher alcohols were consid-
ered as products of the metabolism of tested yeast
strains (the values of A after fermentation were
higher than before fermentation). The PC analysis
explained 98.9% of total variance (60.9% for the PC1
and 38% for PC2).

The score plot of PCA displays three clearly dif-
ferentiated groups occupying different quadrants
of the plot. The profile of higher alcohols related to
the strain Y1 was separated from strains Y2 and Y3
by a positive correlation with PC1. Y1 was charac-
terised by the production of 4-methyl-1-pentanol
(nutty aroma), 3-methylbutanol (banana descriptor),
6-methyl-5-hepten-2-ol (spiciness), 2-methylpropan-
1-ol (winey), and 2-phenyl ethanol (roses). The strains
Y2 and Y3 differ from Y1 by higher production of
3-methyl-3-buten-1-ol and 1-decanol (both sweet
fruity smell). The PC2 allowed the differentiation
of strains Y2 and Y3. 1-Propanol, n-dodecanol, and
2-methyl-1-butanol (active amyl alcohol) were posi-
tively correlated with S. cerevisiae Y3 and negatively
with Y2. S. cerevisiae Y2 was characterised by higher
production of 3-methyl-1-pentanol.

Esters. Most esters in wine are formed during
fermentation enzymatically by the metabolism of
yeasts or during wine maturation as a consequence
of the slow non-enzymatic esterification of different
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Figure 3. Score plot (A) and loading plot (B) of the first and second principal components after the PC analysis of higher
alcohol profiles of Gewurztraminer wines fermented with three autochthonous strains of S. cerevisiae (Y1, Y2, and Y3)

organic acids with higher alcohols present in wine
(Camro et al. 2007; WELDEGERGIS et al. 2011b).
Branched-chain aliphatic esters are the result of the
enzymatic esterification of acids with alcohols pro-
duced by yeasts from the corresponding amino acids
(Ehrlich pathway) or amino acid derivatives, such as
a-ketoacids (ANTALICK et al. 2010). The production
of esters depends on many factors including aeration,
concentration of fatty acids, higher alcohols, and their
precursors. The species and strain of yeasts plays an
important role in the production of esters (PLATA et
al.2003). In Gewurztraminer wines fermented with
three autochthonous S. cerevisiae strains 41 esters
were identified by the LLE-GCxGC-TOF/MS tech-
nique (Table 1). According to literature (JACKSON
2008) the most frequent were ethyl esters (28), methyl

(A)
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Oe

N W R O ®
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g
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-8 -6 -4 -2 0 2 4 6
PC1: 60.3%

(5), and isoamyl esters (3) and esters derived from
acetic (7), hexanoic (3), octanoic (3), and decanoic
acid (3). Based on A of identified VOCs the most
abundant were ethyl hexanoate, ethyl acetate, ethyl
octanoate, ethyl butanoate, 2-methylpropyl acetate,
and 3-methylbutyl acetate.

Esters have been studied very well in terms of the
yeast and bacteria metabolism as well as winemak-
ing technology. However, the profile of naturally oc-
curring esters in grapes or grape juice has not been
published so frequently. Jackson (2008) showed that
the major esters in grapes are phenolic esters, methyl
antranilate, and partially isoamyl acetate in Pinotage;
ethyl 2-methylpropanoate, ethyl 2-butenoate, 3-meth-
ylbutyl butanoate, ethyl hexanoate, ethyl octanoate,
hexyl acetate, 2-metylbutyl acetate were identified
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Figure 4. Score plot (A) and loading plot (B) of the first and second principal components after the PC analysis of
ester profiles of Gewurztraminer wines fermented with three autochthonous strains of S. cerevisiae (Y1, Y2, and Y3)
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in Chardonnay juice and a significant concentration
of isoamyl butanoate and ethyl hexanoate in Riesling
(SWIEGERS et al. 2005). In the analysed Gewurztramin-
er grape juice 6 esters were identified: hexyl acetate,
ethyl hexanoate, n-decyl acetate, methyl decanoate,
ethyl octanoate, and ethyl 2-hexenoate. In terms of
A, ethyl hexanoate (19.38) was the major ester. The
relative peak area of other esters in juice was signifi-
cantly lower (0.09-0.29). During fermentation, the
concentration of most juice esters rapidly decreased;
only ethyl octanoate, ethyl hexanoate, and #-decyl
acetate (in case of S. cerevisiae Y1) increased.

The influence of the yeast strain on the profile of
esters in wine was analysed using PCA (Figure 4)
and the correlation matrix was calculated based
on A, values of 20 esters with the highest average
increase of the value in wine compared with grape
juice. PCA explained 95.8% of total variance (60.3%
for the PC1 and 35.8% for PC2). Similarly to higher
alcohols, each yeast strain was located in an indi-
vidual quadrant of the score plot. The ester profile
related to S. cerevisiae Y1 was separated from the
other two strains by a positive correlation with PC1
and S. cerevisiae Y2 and Y3 were separated by PC2.
Strain Y1 was characterised by higher production of
ethyl butanoate, 2-methylpropyl acetate, and ethyl
hexanoate (typical fruity scent esters) and low pro-
duction of ethyl acetate. Therefore, this strain can
be useful in the production of wines characterised
by sweet and fruity (apple, banana, pineapple) smell
descriptors. This finding correlates also with the
sensory evaluation of tested wine (Figure 1). Strains

(A)
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Y2 and Y3 could be distinguished from each other
according to PC2. S. cerevisiae Y2 was characterised
by higher production of ethyl pyruvate (sweet, rum-
like), diethyl succinate (cooked apple), 2-phenylethyl
acetate (honey, rose-like), and ethyl lactate (cream-
like) and by the lowest production of fruity esters
typical of the strain Y1. S. cerevisiae Y3 produced the
highest concentration of isoamyl acetate (pear/nail
polish) and of long-chain fatty acid esters (fatty and
waxy aroma). Based on these facts, S. cerevisiae Y3
was considered too risky and not suitable for practi-
cal winemaking.

Volatile acids. The most abundant volatile acids
in wines include short-chain acids (acetic, propa-
noic, and butanoic) and medium-chain saturated
acids (hexanoic, octanoic, decanoic, and dodeca-
noic). Short-chain acids are formed as metabolic
by-products of alcoholic fermentation, while medium-
chain acids are considered as intermediates of the
long-chain fatty acid biosynthesis (LAMBRECHTS
& PrRETORIUS 2000). Beside acetic acid (Table 1),
8 volatile acids were identified in the analysed wine
samples (Table 2), while 3 of them were also present
in grape juice (octanoic acid, decanoic acid, and
2-ethylhexanoic acid). Generally, A_ of all identified
volatile acids increased during fermentation depend-
ing on the applied yeast strain. According to literature
(Jascon 2008) the largest increase was recorded in
octanoic and decanoic acid (both responsible for fatty
and waxy odours).

To judge the influence of particular yeast strains on
the profile of volatile organic acids in wine, the PC
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Figure 5. Score plot (A) and loading plot (B) of the first and second principal components atter the PC analysis ot volatile

acid profiles of Gewurztraminer wines fermented with three autochthonous strains of S. cerevisiae (Y1, Y2, and Y3)
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analysis was performed; the correlation matrix was
calculated based on 4 |
identified in wine samples. PCA explained 98% of total
variance (66% for PC1 and 32% for PC2). The profile of
volatile acids related to S. cerevisiae Y3 was separated
from the other two strains by a negative correlation
with PC1; strains Y1 and Y2 were more similar and
separated by PC2. Strain Y1 (compared with the other
strains) was characterised by the lowest production
of octanoic acid and by the highest production of
decanoic acid; yeast strain Y2 was characterised by
higher production of hexanoic acid. S. cerevisiae Y3
produced all 8 volatile acids. Compared to the other
strains, the strain Y3 was characterised by higher pro-
duction of octanoic, butanoic, 2-methylpropanoic, and
2-ethylhexanoic acid. Among all tested yeast strains
S. cerevisiae Y3 produced the lowest concentration
of n-decanoic acid but a high amount of decanoates.
Because of the significantly different odour threshold,
the production of volatile acids does not affect the
aroma of wine as considerably as the production of
their corresponding esters (JIANG & ZHANG 2010):
odour threshold of n-decanoic acid 15 mg/l versus
ethyl decanoate 0.2 mg/l; odour threshold of octanoic
acid 0.5 mg/l versus ethyl octanoate 2 pug/l. Neverthe-
less, the evaluation of the aroma profile by sensory
analysis did not confirm any waxy, fatty, or soapy
aroma in tested wines.

values of all 8 volatile acids

CONCLUSION

Gewurztraminer wines fermented with three dif-
ferent strains of S. cerevisiae var. cerevisiae as well
as grape juice before fermentation were analysed by
methods of basic chemical analysis, gas chromatogra-
phy (LLE-GCxGC-TOF/MS), and sensory analysis to
evaluate the influence of the yeast strain on the profile
of higher alcohols, esters, and volatile acids in wine.

In the analysed wine samples, 175 volatile organic
compounds (VOCs) were identified while in the initial
grape juice only 56 VOCs belonging to higher alcohols
(17), esters (6), and volatile acids (3) were present.
From those VOCs found in wines; 41 belong to esters,
34 are higher alcohols, and 8 belong to volatile acids.
A comparison of A values of VOCs identified in
juice with those in wines provided information on
VOCs originating naturally from grapes and those
produced by the yeast metabolism.

C6 and C8 alcohols identified in juice decreased dur-
ing fermentation, probably as a result of stripping with

CO, or esterification. The influence of the yeast strain
was mostly obvious in case of 1-hexanol. The profile
of higher alcohols associated with yeast metabolism
was strictly yeast strain dependent and the most abun-
dant alcohols were 2-phenylethanol, 3-methylbutanol,
2-methylpropanol, 1-propanol, and 2,3-butandiol.
Based on A, the most abundant esters in analysed
wines were ethyl hexanoate, ethyl acetate, ethyl oc-
tanoate, ethyl butanoate, 2-methylpropyl acetate, and
3-methylbutyl acetate; 6 esters were identified already
in grape juice (hexyl acetate, ethyl hexanoate, n-decyl
acetate, methyl decanoate, ethyl octanoate, and ethyl
2-hexenoate). During fermentation the A , of most
‘juice esters’ rapidly decreased; only ethyl octanoate
and ethyl hexanoate increased. Eight volatile acids
were identified in the analysed wine samples, while 3
of them were already present in grape juice (octanoic
acid, decanoic acid, and 2-ethylhexanoic acid). The
concentration of all identified volatile acids increased
during fermentation and the increase depended on the
yeast strain used for fermentation.

To consider the influence of particular yeast strains
on the profile of higher alcohols, esters, and vola-
tile acids in wine, the means of A | acquired by GC
analysis were used as input values for the principal
component analysis. Using PCA it was found that
S. cerevisiae Y1 was characterised by higher pro-
duction of 4-methyl-1-pentanol, 3-methylbutanol,
6-methyl-5-hepten-2-ol, 2-methylpropanol, and
2-phenyl ethanol. Among the esters, higher produc-
tion of ethyl butanoate, 2-methylpropyl acetate, and
ethyl hexanoate and low production of ethyl acetate
was observed. This strain also produced the low-
est concentration of octanoic acid and the highest
concentration of decanoic acid. The profile of wine
fermented with S. cerevisiae Y2 was characterised
by higher concentration of 3-methyl-3-buten-1-ol
and 1-decanol, 3-methyl-1-pentanol, ethyl pyruvate,
diethyl succinate, 2-phenyletyl acetate, and ethyl lac-
tate and by the lowest concentration of fruity esters
typical of the strain Y1. Also, Y2 was characterised by
higher production of hexanoic acid. S. cerevisiae Y3
was characterised by high production of 3-methyl-
3-buten-1-ol, 1-decanol, 1-propanol, n-dodecanol,
and 2-methylbutanol. It also differentiated by the
highest production of ethyl acetate, 3-methylbutyl
acetate, and of long-chain fatty acid esters.

The obtained GCxGC-TOF-MS, statistical data
treatment as well as sensory evaluation of wines
confirmed that S. cerevisiae Y1 is the most suitable
yeast for the production of wines characterised by
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clean aroma and sweet, fruity (apple, banana, pine-
apple) smell descriptors. S. cerevisiae Y2 provided
rather a neutral aroma profile with intense green
tones and Y3 (in spite of the most intense rose-like
aroma) was not considered suitable for practical
winemaking because of the excessive production of
ethyl and isoamyl acetate and waxy scents.
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