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Abstract

Jafari A., Bakhshipour A. (2014): Inspection of quince slice dehydration stages based on extractable im-
age features. Czech J. Food Sci., 32: 456–463.

The relation between the moisture content of the fruit and image-based characteristics was investigated. Quince sam-
ples were dried in an oven dryer at three different temperatures (40, 50, and 60°C). Several shape, texture, and colour 
features of the quince slices were extracted from the images. Gradual reduction was observed in all morphological 
features when the moisture content of the samples decreased. Regression equations between the extracted features and 
moisture content of the quince slices were investigated. The moisture content prediction equations based on morpho-
logical features were more precise than the textural features while colour information did not yield any satisfactory 
result. To exploit the morphological and textural features simultaneously, several artificial neural network models 
were developed to predict the drying behaviour of quince. R2 and RMSE values were determined as 0.998, 0.008%. 
It was concluded that the combination of the neural networks and image processing technique has the potential to 
determine the moisture variations.
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During the drying processes, high moisture materi-
als like fruits are exposed to physical and chemical 
changes. The quality of the dehydrated products is 
a complex result of the properties that characterise 
the final products, of which the most important 
one is colour (Kiranoudis & Markatos 2000). 
Researchers have been interested in the application 
of machine vision systems in various bioprocessing 
fields (Smékal et al. 2005; Firatligil-Durmus et al. 
2008; Randulová et al. 2011; Golpour et al. 2014). 
Several features can be extracted from the images 
to be correlated with the quality of food products. 
Kit et al. (2004) presented a simple digital imaging 
method to measure and analyse the surface colour 
of food products. Morphological features are widely 
used in automated grading, sorting, and detection of 
objects in the industry ( Jayas et al. 2000).

Shrinkage occurs during the fruits and vegetables 
dehydration when the viscoelastic matrix contracts 
into the space that was previously occupied by the 
water removed from the cells (Yadollahinia & 
Jahangiri 2009). Yadollahinia and Jahangiri 

(2009) used a method based on computer vision to 
analyse the effect of drying on potato slices shrinkage. 

Image texture is an important image feature and 
has been applied greatly in the food industry (Wu et 
al. 2008). Fernández et al. (2005) investigated the 
effect of drying on shrinkage, colour, and some image 
texture features of apple discs. However, none of the 
above researches reported the suitable equations to 
estimate the moisture content (MC) during drying.

Machine vision has the potential to be used as a 
precise method for the recognition and assessment 
of apparent characteristics. It can be used to deter-
mine the qualitative characteristics of the product, 
provided that a strong correlation exists between 
the qualitative specifications and visual features. 
Therefore, in the presence of such relations, ma-
chine vision systems can be used in a dryer system 
to control the product quality in real time mode. 

Artificial Neural Network (ANN) is one of the ar-
tificial intelligences widely used in the recent decade 
to simulate and predict useful parameters in drying. 
ANNs overcome the limitations of conventional ap-
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proaches by extracting the desired information using 
the input data. It does not need specific equation 
forms. Instead, it needs sufficient input and out-
put data (Menlik et al. 2010). Farkas et al. (2000) 
studied the application of ANNs in an agricultural 
fixed bed drier and concluded that the ANN could 
be effective for modelling the grain-drying process. 
Cubillos and Reyes (2003) also designed an ANN 
to model the drying of carrots. Based on these useful 
characteristics of machine vision and neural network, 
it seems that a real time inspection system can be 
utilised – something that is impossible without ex-
pensive real-time sensors.

The objectives of this paper are to investigate the 
existence of some relations between the apparent 
features definable by machine vision for the moisture 
content of quince slices during dehydration, and to 
examine the use of artificial neural networks and 
regression based modelling to exploit all the extracted 
features in a single measurement tool.

MATERIAL AND METHODS

Sample preparation. We obtained the quince fruits 
(Cydonia Oblonga) used in this study from a local 
market. Fresh samples were selected manually and 
stored at a temperature of 20°C until the beginning 

of the experiment. For the drying experiment, discs 
of quince with a diameter of 20 mm and thickness 
of 7 mm were prepared. The samples were weighed 
before drying and the first-time images of the sam-
ples were captured with the resolution of 180 dpi 
and size of 1800 × 1600 pixels. The actual pixel size 
of the captured images was 7 pixel/mm. A CCD 
camera (Canon IXUS 960IS, 12.1 megapixel; Canon 
Inc., Tokyo, Japan) was used and mounted vertically 
at the distance of 30 cm over the samples. Quince 
slices were placed onr ceramic planes coated with 
heat-resistant black paint and dried in an oven dryer 
at three different temperatures (40, 50, and 60°C). 
For each temperature, 42 slices of the samples were 
used. A dry base of MC for the samples was calculated 
and used for equation developments in this project.

Image segmentation. The flowchart in Figure 1 
shows the algorithm developed in this study to segment 
the images and extract the desired features. Image seg-
mentation is the first step of image analysis. Optimal 
threshold value was applied to grey-scaled images to 
subtract the background from the images and obtain 
the binary image. After removing all undesirable ob-
jects from the background and filling the unwanted 
noisy holes (based on the 30 images investigated in 
this section, the area of noisy holes was 4.782 ± 0.102% 
of the region of interest in binary image) within the 

Figure1. Flowchart of the image 
segmentation and feature extraction

K – grey-level intensity; Kcal – optimal 
threshold
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quince disc object, the final binary image was ready 
for extracting quantitative morphological data.

To remove the effects of the background pixel val-
ues from the colour and texture data, logical AND 
operator was applied to superimpose the original 
RGB images of the samples on the binary images 
gained from the last steps. The result was an image 
with omitted background. This image was then used 
to extract the colour and texture data.

Feature extraction. Six morphological features 
were calculated; area, perimeter, maximum, minimum 
and equivalent diameters, and surface roundness. 
The average values were determined of intensities 
for each colour component in RGB, HSI, and L*a*b 
colour spaces. 

Grey-level co-occurrence matrix (GLCM) matrices 
were calculated for directions 0, 45, 90, and 135 degrees 
with a distance of one pixel between two adjacent 
pixels. The average of four developed matrices was 
determined to obtain the final co-occurrence matrix 
used for the texture feature extraction. Five textural 
features were determined for each grey-scale image.

Entropy: measures the disorder of an image. It 
achieves its largest value when all elements in GLCM 
matrix are equal (Gonzales & Woods 2002).

Entropy = ΣiΣj Cij log Cij	  (1)

where: Cij– (i,j) array of GLCM

Energy: also called Angular Second Moment (Hara- 
lick 1979) or Uniformity is the measure of textural 
uniformity of an image. Energy reaches its highest 
value when grey level distribution has either a con-
stant or a periodic form (Gonzalez & Woods 2002).

Energy = ΣiΣjCij	 (2)

Inertia: also called contrast, is a measure of the 
amount of local variations present in an image. A 
high contrast value indicates a high degree of local 
variation (Park & Chen 2001).

Inertia = ΣiΣj (i – j)2Cij	 (3)

Correlation: measures the correlation between 
the elements of the matrix. When correlation is 
high, the image will be more complex than when 
correlation is low.

Correlation = ΣiΣj 

(i – µ)(j –µy)Cij	 (4) 
                                  σiσj

where: µx, µy – average and standard deviations of Cx, Cy

Cx, Cy are calculated as:

Cx(i) = ∑
Ng 

Cij  and Cy(i) = ∑
Ng 

Cij	 (5) 
            

j–1
                      

j–1  

where: Ng – number of grey levels

Inverse difference moment (IDM): measures image 
homogeneity. This parameter achieves its largest 
value when most of the occurrences in GLCM are 
concentrated near the main diagonal (Park & Chen 
2001).

IDM = ΣiΣj          
Cij	 (6) 

                  1 + (i – j)2

Analysis. All extracted features were exported to 
Excel sheets for later statistical analysis and plotting 
the figures. The data were analysed statistically using 
SPSS 17 software (SPSS Incorporation, Chicago, USA) 
to investigate if there was an acceptable relation be-
tween the MC of the samples and extracted features. 

Several forms of relations between MC and ex-
tracted features were investigated to find the best 
equation for the moisture prediction including lin-
ear, logarithmic, inverse, and exponential relations 
between the MC and features. The best descriptive 
relations were selected based on the maximum de-
termination coefficient (R2) and the lowest Mean 
Square Error (MSE).

Neural Networks. Multilayer perceptron neural 
networks with back-propagation training algorithm 
were used to predict the MC of the samples. The 
values of colour, morphological and textural features 
were supplied as input neurons.

The input data were divided into three parts ran-
domly, 60% for training, 20% for validation and 20% for 
network test (Nasirahmadi & Behroozi-Khazaei 
2013). Several topologies of networks were developed 
and then compared. Subsequently, the network with 
the best performance was selected based on higher 
values of the R2 and the lowest values of the root 
means square error (RMSE) (Menlik et al. 2010).

RESULTS AND DISCUSSION

Moisture content and time. The variations of the 
drying rate with the drying time for various tempera-
tures of quince slices are shown in Figure 2. The values 
of MC changed rapidly in the first 5 h of drying. The 
initial MC was about 5.321 dry base – d.b. (= 5321% 
d.b. = 84.18% wet base – w.b.). Decimal dry basis 
MC values were used in this study for calculations. 
It is evident from Figure 2, that by increasing the 
drying temperature, the total drying time decreases, 
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especially for higher MC values. Figure 3 indicates 
that the process of drying clearly affects the grey-
level intensities of quince slice images which is a 
good numerical descriptor to track the changes in 
the apparent characteristics of food materials during 
processing or as a consequence of it (Chanona et 
al. 2003; Kerdpiboon & Devahastin 2007).

MC vs. morphological features. Figure 4 represents 
a gallery of images from a single quince disc at even 
hours during the drying process at the temperature 
of 50°C. The changes in the size and shape of the 
quince discs were evident as drying progressed. All 
morphological features decreased in the course of 
time passed. This result confirms previous reports 
regarding the morphological changes on grape tis-
sue during drying (Ramos et al. 2004). It is also in 
agreement with the reports on apple slices (Fernán-
dez et al. 2005) and potato discs (Yadollahinia 
et al. 2009).

A linear relation with a good coefficient of cor-
relation was achieved between the MC and each of 

the morphological features of the image separately, 
except for roundness (Table 1). High correlation 
coefficient values and the variance inflation factor 
within morphological features themselves showed 
that these features have multicollinearity. Therefore 
and because of the benefits of simpler relations and 
the importance of a higher process speed for real 
time projects, a simple relation was developed using 
the area and drying time to predict MC of quince 
slices (Table 2).

To derive a comprehensive equation, the time and 
temperature were also incorporated into MC predic-
tion equations. Several forms of relations including 
linear, quadratic, exponential, and logarithmic were 
tested. The best results are presented in Table 3 while 
the Eq. (7) with the best R2 (0.965) and the least MSE 
(0.361%) was selected. 
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Figure 2. The variation of MC during the time for various 
drying temperatures

Figure 3. Grey-level intensities of quince disc images 
showing texture change: (a) before drying and (b) after 
12 h drying

Table 1. Correlation coefficients between morphological features and moisture content MC

Temperature (°C) Area Perimeter Equivalent diameter Minor diameter Major diameter Roundness
40 0.981 0.970 0.974 0.973 0.951 0.794
50 0.976 0.963 0.968 0.959 0.946 0.719
60 0.971 0.967 0.962 0.963 0.924 0.722

Table 2. Relations between moisture content (MC), time, and area of quince discs

Temperature (°C)
40 50 60

MC½ = c + ax+ by MC½ = –0.732 – 0.045 time + 0.003 area MC½ = –0.179 – 0.059 time + 0.002 area MC½ = –1.120 – 0.034 time + 0.003 area

t-value of (a) –13.901 (0.000) –20.834 (0.000) –13.825 (0.000)
t-value of (b)   36.173 (0.000)   29.232 (0.000)   51.252 (0.000)
t-value of (c) –10.174 (0.000) –12.710 (0.000) –21.661 (0.000)
R2 0.973 0.974 0.963
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MC = (–0.616 – 0.040 time – 0.004 temperature + 
           + 0.003 area)2	 (7)
(67.72)	 (–8.46)	 (–23.53)	 (–12.23) 
[0.000] 	 [0.000]	 [0.000]	 [0.000]

The values in the parentheses and brackets are 
respectively t- and P-values for each coefficient. All 
of them are significant (P < 1%). Equation (7) results 
in an acceptable prediction of MC of quince discs. 
The predicted versus measured values of MC are 

illustrated in Figure 5a. Prediction was more precise 
with lower MC values.

MC vs. colour features. There was no significant 
correlation between MC of quince slices and average 
as well as standard deviation values of the extracted 
colour components (Table 4). These results indicated 
that the colour features do not follow a distinct trend 
with the MC changes. Thus, the colour is not a suit-
able descriptor of MC value during drying in the 
case of quince drying. 

Figure 4. The gallery of images 
of a single quince disc as a 
function of drying time (time 
in hours)
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Figure 5. Normalised values of predicted and measured moisture content: (a) using area, time, and temperature and 
(b) using energy, time, and temperature

(a)	 (b)

Table 3. Some of developed relations for moisture content (MC) prediction using time, temperature and area

Equation R2 MSE (%)
MC = –5.160 – 0.004 time + 0.005 temperature + 0.009 area 0.947 0.439
MC = (–0.616 – 0.004 time + 0.005 temperature + 0.003 area)2 0.965 0.361
MC = (–36.009 + 0.387 time + 0.089 temperature + 0.051 area)0.5 0.864 0.613
Ln (MC) = –0.428 – 0.193 time – 0.028 temperature + 0.003 area 0.954 0.401

MSE – mean square error
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MC and textural features. High correlation coeffi-
cients were observed between MC and textural Energy 
as well as Inertia (Table 5). The R2 of the regression 
relations decreased when the drying temperature 
increased. The same trend could be seen for the pre-
cision of equations developed to predict MC values. 
Several forms of equations were tested and finally the 
best equations were developed using, energy, drying 
time, and the square root of MC as follows (Table 6). 

The t-value of the coefficient of drying time in 
the equation at 60°C was not significant and did not 
improve the precision of MC prediction equation.

Finally, several equations were evaluated to derive a 
comprehensive equation for predicting MC of quince 
slices using energy, drying time, and drying tempera-
ture. Table 7 shows some of the best relations while 
Eq. (8) (R2 = 0.949 and MSE = 0.405%) was selected. 

MC = (0.317 – 0.019 time – 0.004 temperature + 
           + 6.760 area)2	 (8)
(52.68)	 (–5.84)	 (–7.97)	 (–6.53) 
[0.000] 	 [0.000]	 [0.000]	 [0.000]

Regarding R2, MSE, t- and P-values, Eq. (8) is a 
good predictor of MC based on textural data. 

The scatter plot of the predicted MC using energy, 
time, and temperature vs. measured MC has been 
illustrated in Figure 5b. Similar to Figure 5a, the ac-
curacy of prediction increases as MC decreases. It is 
possible to predict MC of the quince slices by consid-
ering textural features during drying. However, this is 
less efficient than the use of morphological features.

Results of neural networks. At last, all morphologi-
cal, textural, and colour data were used in an ANN 
model. The results acquired from several topologies 

Table 4. Correlation coefficients between colour features and moisture content

Temperature (°C) R G B H S V L* a* b*
40 –0.730 –0.185 –0.043 –0.200 –0.643 –0.732 –0.347 –0.544 –0.354
50 –0.643 –0.059 –0.299   0.128 –0.349 –0.645 –0.211 –0.570 0.185
60 –0.738 –0.104   0.170 –0.222 –0.698 –0.788 –0.272 –0.633 –0.549

R,G, B – Red, Green, Blue colour components in RGB colour space; H, S, and V – hue, saturation and intensity components 
in HSV colour space; L*, a*, b* – lightness and chromatic components in L*a*b* colour space

Table 5. Correlation coefficients between texture features and moisture content

Temperature (°C)  Entropy Energy Inertia Correlation Inv. diff.
40 –0.715 0.964 –0.946 0.547 0.809
50 –0.737 0.947 –0.954 0.435 0.806
60 –0.716 0.942 –0.935 0.640 0.815

Table 6. Relations between moisture content (MC), time, and energy of quince discs

Temperature (°C)
40 50 60

MC½ = c + ax+ by MC½ = 0.215 – 0.029 time + 6.760 area MC½ = 0.644 – 0.052 time + 4.580 area MC½ = –0.151 – 0.001 time + 7.860 area

t-value of (a) –6.082 (0.000) –16.001 (0.000) –0.192 (0.850)

t-value of (b) 27.290 (0.000)   27.443 (0.000)  40.010 (0.000)

t-value of (c)   3.523 (0.000)   15.834 (0.000) –3.532 (0.000)

R2 0.954 0.972 0.944

Table 7. Some of developed relations for moisture content (MC) prediction using time, temperature and energy

Equation R2 MSE (%)
MC = –2.220 + 0.059 time + 0.007 temperature + 21.109 energy 0.917 0.497
MC = (0.317 – 0.019 time + 0.004 temperature + 6.760 energy)2 0.949 0.405
MC = (–20.000 + 0.720 time + 0.099 temperature + 115.000 energy)0.5 0.822 0.641
Ln (MC) = –0.428 – 0.169 time – 0.028 temperature + 7.909 energy 0.939 0.420
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of ANN are shown in Table 8. Regarding this table, the 
(4-10-10-1) MLP network with tangent sigmoid trans-
fer function yielded the best results with a maximum 
R2 value of 0.999, lowest values of the RMSE (0.008%). 
The plot of the predicted MC versus measured MC is 
shown in Figure 6. The developed ANN model can be 
used for the determination and prediction of drying 
behaviours of quince using image features.

Based on the results of the experiments which 
showed a good agreement between the texture and 
some shape features of the samples, it was concluded 
that the indirect measurement of the MC of quince 
slices is feasible especially when combinations of 
correlated features are used. The effective features 
were combined in a neural network model to deter-
mine the MC, whereas an R2 up to 0.999 between the 
MC prediction and the measurement demonstrated 
its feasibility for the MC measurement of quince 
slices, on line.
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CONCLUSIONS

Quality control of products during a continuous 
drying process requires sensors that are capable of 
measuring the requested indices in a real-time mode. 
Direct measurement of MC through sampling of the 
product is undesirable because it interrupts the con-
tinuous flow of the materials. In this study, indirect 
measurement of MC was tried via measuring the 
visible characteristics of the samples. Such a kind 
of measurement is possible if there is a good agree-
ment between the changes of visible features and the 
changes of MC. Therefore several experiments were 
conducted to investigate the correlation between the 
shape, texture and colour features of the samples and 
their corresponding MC. 



	 463

Czech J. Food Sci. Vol. 32, 2014, No. 5: 456–463

under various drying conditions. Drying Technology, 
25: 135–146.

Kiranoudis C.T. Markatos N.C. (2000): Pareto design 
of conveyor-belt dryers. Journal of Food Engineering, 
46: 145–155.

Kit L., Spyridon Y., Papadakis E. (2004): A simple digital 
imaging method for measuring and analyzing color of 
food surfaces. Journal of Food Engineering, 61: 137–142.

Menlik T., Özdemir M.B., Kirmaci V. (2010): Determi-
nation of freeze-drying behaviours of apples by artificial 
neural network. Expert Systems with Applications, 37: 
7669–7677.

Nasirahmadi A., Behroozi-Khazaei N. (2013): Identifi-
cation of bean varieties according to color features using 
artificial neural network. Spanish Journal of Agricultural 
Research, 11: 670–677.

Park B., Chen Y.R. (2001): Co-occurrence matrix texture 
features of multi-spectral images on poultry carcasses. 
Journal of Agricultural Engineering Research, 78: 127–139.

Ramos I.N., Silva C.L.M., Sereno A.M., Aguilera J.M. 
(2004): Quantification of microstructural changes dur-
ing first stage air drying of grape tissue. Journal of Food 
Engineering, 62: 159–164.

Randulová Z., Tremlová B., Řezáčová-Lukášková Z., 
Pospiech M., Straka I. (2011): Determination of soya 
protein in model meat products using image analysis. 
Czech Journal of Food Sciences, 29: 318–321.

Smékal O., Pipek P., Miyahara M., Jeleníková J. (2005): 
Use of video image analysis for the evaluation of beef 
carcasses. Czech Journal of Food Sciences, 23: 240–245.

Wu D., Yang H., Chen X., He Y., Li X. (2008): Application 
of image texture for the sorting of tea categories using 
multi-spectral imaging technique and support vector 
machine. Journal of Food Engineering, 88: 474–483.

Yadollahinia A., Jahangiri M. (2009): Shrinkage of 
potato slices during drying. Journal of Food Engineer-
ing, 94: 52–58.

Received for publication September 27, 2013
Accepted after corrections March 7, 2014

Corresponding author:

Dr Adel Bakhshipour, Farm Machinery Department, Shiraz University, Shiraz, Iran;  
E-mail: abakhshipour@shirazu.ac.ir


