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Abstract

Václavík L., Ovesná J., Kučera L., Hodek J., Demnerová K., Hajšlová J. (2013): Application of 
ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) metabolomic 
fingerprinting to characterise GM and conventional maize varieties. Czech J. Food Sci., 31: 368–375.

The feasibility of metabolomic fingerprinting approach based on ultra-high performance liquid chromatography-
quadrupole-time-of-flight mass spectrometry (UHPLC-QTOFMS) was studied to assess its ability to discriminate 
between maize varieties, and to show the associations between them on the metabolomic level. The non-targeted 
metabolomic analysis was applied to assess the variability within two varieties grown under different environmen-
tal conditions and to characterise the association within a sample set comprising both conventional and transgenic 
(MON-ØØ81Ø-6) maize varieties cultivated under the same environmental conditions (locality). Typical metabolomic 
fingerprints were established for individual plants. The plants representing two varieties formed well separated clus-
ters. Metabolomic fingerprints of the second sample set enabled their unambiguous discrimination. The differences 
in metabolomic fingerprints between maize varieties were identified and documented by grouping in PCA and/or 
CA. The results indicate a similar genetic basis of transgenic maize varieties as they descend from a MON 810 event. 
The results explicitly showed that the variability of the metabolites in MON 810 did not exceed the ranges measured 
within the conventional varieties, thus supporting the concept of substantial equivalence.
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The use of genetically modified (GM) crops in 
agriculture and agro-industry may offer a number of 
advantages over the conventional counterparts, such 
as the resistance to various diseases, pests, herbicides, 
or increased yields and nutritive value (Koziel et al. 
1993; Gao et al. 2000; Barros et al. 2010). Among 

other GM crops, the commercial transgenic maize 
(Zea mays L.), containing various forms of the Cry 
gene (Cry1Ab, Cry1Ac, Cry1af, Cry2Ab2, Cry34ab1, 
Cry3Bb1, Cry9c or Cry1Fa) from the Bacillus thu- 
ringiensis (Bt), is grown on the largest scale (Clive 
2012). The expression of the above genes allows the 
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Bt maize to produce proteins that are highly toxic 
to some Coleopteran and/or Lepidopteran and to 
protect itself from major insect pests frequent in 
European and North American agriculture (e.g. 
European corn borer) (Clive 2012).

The commercial growth and use of GM crops 
for food and other purposes is regulated in many 
countries and comprehensive safety assessment 
procedures are required prior to their approval 
(Marmiroli et al. 2008). The safety assessment of 
the GM crops is based on the concept of “substantial 
equivalence” and involves comparative analyses of 
targeted chemical constituents representing nutri-
ents, toxins, and antinutrients in a GM crop and 
the appropriate conventional counterpart (OECD 
1993; FAO/WHO 2000). Relatively recently, non-
targeted metabolomics-based approaches were ap-
plied to extend the coverage of analytes in substantial 
equivalence studies and to identify the compounds 
differing in abundance in GM and non-GM plants 
(Barros et al. 2010; Heinemann et al. 2011; Man-
neti et al. 2006; Leon et al. 2009; Frank 2012).

Although a large amount of data has been evaluated 
to assess the safety of the GM plant and products, 
metabolomics-based studies aiming at comprehen-
sive analysis of as many low molecular compounds 
(metabolites) in a biological sample as possible, 
have not been extensively used up to now. This chal-
lenging task can be only completed with the use 
of advanced analytical platforms facilitating the 
analysis of a wide range of metabolites differing 
both by physico-chemical properties and abun-
dance, such as nuclear magnetic resonance (NMR) 
and/or mass spectrometry (MS) coupled with the 
separation techniques employing liquid chroma-
tography (LC), gas chromatography (GC), and cap-
illary electrophoresis (CE) (Dunn & Ellis 2005; 
Wishart 2008; Cevallos-Cevallos et al. 2009). 
As the data generated by these techniques are very 
complex, advanced processing software tools and 
multivariate chemometric methods are needed for 
their interpretation (Katajamaa & Dresic 2007).

In this feasibility study, the potential of non-
targeted metabolomics workflow using ultra-high 
performance liquid chromatography-quadrupole-
time-of-f light mass spectrometry (UHPLC-
QTOFMS) instrumentation and chemometrics 
has been explored for the evaluation of the con-
ventional and GM maize (MON 810 event). The 
samples analysed comprised: (i) GM and non-GM 
unrelated varieties coming from different environ-
mental conditions and (ii) various commercial Bt 

maize and non-GM maize varieties grown under 
identical field conditions in a field trial. Here we 
report the possibility of using UHPLC-MS-based 
metabolomic fingerprinting for comprehensive 
evaluation of the metabolome of maize leaves.

MATERIAL AND METHODS

Plant material. The first set of leaf samples 
(approximately 5 g) used in this study was kindly 
provided by a private grower. The second set was 
sourced from Czech Institution for Testing in Ag-
riculture (CISTA) in field trials. The plant leaves 
were collected in phenological phase on BCHCH-
scale: Leaf development, code 19 (Lancashire et 
al. 1991). The first sample set consisted of trans-
genic Bt variety Kvalitas YG (event MON 810) and 
the non-GM unrelated maize, both grown under 
different environmental conditions. For each of 
the above mentioned groups (i.e., transgenic and 
conventional maize), 10 samples representing 
leaves were taken from individual plants. The 
second sample set represented both GM Bt maize 
varieties (n = 10) and non-GM maize varieties (n = 
10), grown in the field trial as comparators under 
identical conditions in the southern part of the 
Czech Republic. Like in the case of the first sample 
set, leaves were collected from individual plants 
of each variety (Table 1). Until further processing, 
the leaf tissues were stored in the dark at –70°C.

Verification of GM and non GM nature of 
samples. Briefly, the collected leave tissue samples 
were frozen and homogenised in liquid nitrogen. 
DNAs were isolated from each leaf sample in du-
plicates by CTAB based method (Ovesná et al. 
2008). DNAs quality and quantities were checked 
by electrophoretic separation of sample aliquots 
on 0.7% agarose gel and spectrophotometry (Na-
noPhotometer; Implen, Los Angeles, USA) at 260 
and 280 nm. The DNA (100 ng) was further used 
for real-time PCR-based event specific (MON-
ØØ81Ø-6) assay (ABI 7900 HT) to verify the pres-
ence of MON 810 event. Specific primer sets were 
used to detect the presence of 35S CaMV promoter 
and NOS terminator (Ovesná et al. 2006; Querci 
et al. 2010) and to exclude other GM modifica-
tions using PCR (MJ Research, Watertown, USA).

Metabolite extraction procedure. The leaves 
were homogenised in liquid nitrogen. The obtained 
powder (1 g) was extracted by shaking with 10 ml 
of methanol for 5 minutes. The mixture was cen-
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trifuged for 5 min (10 000 rpm, 20°C), the super-
natant was passed through a 0.22 µm PTFE filter 
and transferred into a 2 ml amber autosampler 
vial. Prior to UHPLC-MS analysis, the samples 
were diluted 10-fold with pure methanol to avoid 
the possible saturation of the MS detector. The 
sample extracts were stored at –22°C.

Ultra high performance liquid chromatography-
mass spectrometry (UHPLC-MS). An Acquity Ultra 
Performance LC system coupled with Synapt G2 HD 
quadrupole-time-of-flight mass spectrometer (Wa-
ters, Milford, USA) was used in this study. Chroma-
tographic separation was performed with an Acquity 
UPLC HSS T3 reversed phase analytical column 
(50 mm × 2.1 mm i.d., 1.7 µm particle size; Waters, 
Milford, USA) maintained at 40°C. The sample vol-
ume of 3 µl with the partial loop injection mode was 
used. The mobile phase consisted of 0.1% aqueous 
formic acid (A) and 0.1% formic acid in methanol 
(B). The gradient elution was carried out as follows: 
0–7 min eluent B 5 – 100%; 7–9 min eluent B 100%; 
9–10 min column equilibration – eluent B 5%. The 
mobile phase flow was 0.5 ml/minute.

The Synapt G2 HD instrument was operated in 
positive electrospray ionisation (ESI) mode; the 
parameter settings used during the measurements 
were as follows: capillary voltage (+2500 V), cone 
voltage (+30 V), source temperature (120°C), des-
olvation temperature (350°C). Nitrogen was used 
as both desolvation and cone gas at a flow rate of 
800 and 10 l/h, respectively. Leucine-enkephaline 
was used as lock mass (m/z 556.2771) for internal 
calibration at a concentration of 2 ng/µl and a flow 
rate of 10 µl/minute. Both full MS and the MS/MS  
fragmentation mass spectra were acquired at a rate 
2 spectra per second in the range m/z 50–1000. 
The mass resolving power of the instrument was 
approximately 20 000 FWHM (full width at half 
maximum) at m/z 200.

In order to diminish any possible time depend-
ent changes in UHPLC-MS chromatographic fin-
gerprints, the in-batch sequence of the samples 
was randomised. Two repeated analyses of each 
sample were performed. Within the measurement 
sequence, blank samples (pure methanol) were 
analysed.

Table 1. List of varieties used in the study, breeding company and basic characteristic of plant material

Variety GM Company FAO 
number Registration Hybrid/Line Early vigor 

(9–1)
CRAZI YG MON 810 KWS SAAT AG 320 2009 Sc 8.3
DKC 2961 YG MON 810 Monsanto Technology LLC 230 2010 Sc 5.7
DKC 3512 YG MON 810 Monsanto Technology LLC 290 2008 Sc 7
DKC 3795  Monsanto Technology LLC 260 2010 Sc 8.3
DKC 3872 YG MON 810 Monsanto Technology LLC 270 2011 Sc 6.3
ES IMPERIAL YG MON 810 Euralis Semences 300 2011 Sc 9
JOKARI CS  Caussade Semences 320 2007 Sc 8.3
JUXXIN  Société RAGT 2n 330 2008 Sc 9
KARAS YG MON 810 KWS SAAT AG 400 2008 Sc 9
KRABAS YG MON 810 KWS SAAT AG 300 2011 Sc 8.3
LG 30290  LIMAGRAIN GENETICS Grandes 

Cultures S.A.
280 2011 Sc 8.3

MERCURIO  KWS SAAT AG 250 2010 Tc 8.3
OXXYGEN YG MON 810 Société RAGT 2n 330 2011 Sc 7
P9494  Pioneer Hi-Bred International, Inc. 340 2011 Sc 7.7
PR38V12  Pioneer Hi-Bred International, Inc. 330 2007 Sc 7
PR39T47 MON 810 Pioneer Hi-Bred International, Inc. 270 2008 Sc 8.3
RH07103  Société RAGT 2n nd nd nd nd
RH11056 MON 810 Société RAGT 2n   Sc 7.7
SUBIANCA  Dow AgroSciences GmbH 340 2010 Sc 7
TEXXUD  Société RAGT 2n 340 2005 Sc 5

nd – not detected
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Data processing and statistical analysis. With 
regard to the complexity of UHPLC-MS records 
obtained by the analysis of the sample sets studied, 
an automated algorithm was employed for the data 
mining and aligning procedures. The software 
automatically organised the data into matrix of 
(x × y) containing y peaks (characterised by RT, 
m/z value, and intensity) in each of the x records. 
To ensure that the data comprise only the peaks 
originating from the maize extract, the peaks ob-
served in the blank samples records were removed.

The processing of the LC-MS data was carried 
out with the use of MarkerLynx software, Ver-
sion 4.1 (Waters, Milford, USA). Automated data 
mining was performed in the retention time (RT) 
window of 0.2–10.0 min and m/z range 50–1000 
at an intensity threshold setting of 500 cps. To 
reduce the dimensionality of the data matrix ob-
tained, the peaks representing isotopic ions were 
automatically excluded during the data mining 
based on isotope spacing. The detected peaks 
were aligned across the sample set using a mass 
tolerance window 0.01 Da and a retention time 
window 0.1 minutes. Data matrix comprising the 
list of peaks characterised by RT, m/z, and inten-
sity was obtained in this way. The data set No.1 
was Pareto-scaled (square root of the standard 
deviation is used as the scaling factor) prior to the 
principal component analysis (PCA) facilitated by 
Extended Statistics module. In the case of the data 
set No. 2, the peaks with zero intensity in at least 
one sample were excluded from the data matrix. 
The data matrices of (20 × 2613) containing 2613 
peaks (characterised by RT, m/z value, and inten-
sity) in each of the 20 records were obtained for 
each data set. The data set No. 1 was processed 
with PCA, while for processing the data set No. 2 
both cluster analysis (CA) and PCA were used. In 
the case of the sample set No. 2, PCA and CA were 
conducted with the use of the software package 
STATISTICA, Version 10 (StatSoft, Tulsa, USA). 
Three dimensional PCA based on correlation ma-
trix of (20 × 20) resulted from the factor analysis 
of UHPLC-MS data obtained by the analysis of the 
data set No. 2 (20 maize varieties, 2613 peaks).

RESULTS AND DISCUSSION

DNA analysis confirmed the expected nature 
of the plant material. The conventional varieties 
were free of contamination with GM maize and 

neither of the analysed varieties contained other 
GM event. Hence, the material for the preliminary 
investigation of the possible associations between 
the inserted GM event and the metabolomic fin-
gerprint was available. If there is some general 
effect of the transgene MON 810 other than the 
pest resistance, a specific metabolic pattern has 
to be identified across the two sets.

LC-MS metabolomic fingerprinting

In this study, non-targeted analysis of maize 
methanolic leaf extracts was performed to ob-
tain comprehensive metabolomic fingerprints 
containing information on as many metabolites 
as possible. Considering the non-targeted nature 
of the analyses to be performed, some generic 
settings had to be applied to both LC separation 
and MS detection. Since various metabolites dif-
fer significantly in terms of polarity, an analytical 
column with reversed stationary phase contain-
ing embedded polar groups was used instead of 
conventional C18 or C8 reversed stationary phases 
to enhance the retention of highly polar compo-
nents present in the maize leaf metabolome. The 
use of stationary phase with sub-2 µm particles 
significantly increased the chromatographic reso-
lution and enabled relatively rapid analysis with 
injection-to-injection run time of 11 minutes. 
Since the typical base width of the detected peaks 
was below 12 s, sufficient characterisation of the 
analytes peak shapes was possible at acquisition 
speed settings used.

The reproducibility of both m/z values and reten-
tion times (RT) of the detected metabolites has a 
major impact on the overall quality of UHPLC-MS 
metabolomic data. High fluctuations of these pa-
rameters during the measurement sequence result 
in a poor outcome of the data mining process and 
lead to misinterpretation of the results. To explore 
the possible RT fluctuation, RTs of three peaks (RT 
0.7, 4.2, and 7.1 min) were monitored during the 
measurement sequence of 20 sample injections. 
Based on these data, typical peak RT variability 
was found to be below 5% (relative standard devia-
tion, RSD) that can be considered as an acceptable 
value. QTOF mass analyser can be considered an 
effective tool for metabolomics-based studies of 
biological samples (Xie et al. 2008). It also ena-
bles accurate mass measurement in a broad m/z 
range. To obtain as low mass errors as possible, 
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regular external calibration of the instrument was 
performed. Additionally, a continuous correction 
of small mass drifts correction was carried out 
with the use of mass locking compound delivered 
to the instrument via 2nd ESI sprayer. Under these 
conditions, the achieved mass accuracy was below 
5 ppm. Despite that in the initial optimisation ex-
periments both positive and negative ESI modes 
were used, the preliminary results have explicitly 
shown that the latter polarity setting yielded sig-
nificantly fewer informative records. Therefore, 
only positive ESI was further used.

Data mining and data pre-treatment

It should be noted that the peaks extracted from 
the UHPLC-MS fingerprints could not be generally 
considered to be the individual metabolites because 
of the signal redundancy. This redundancy was, to 
some extent, decreased in the data mining step by 
automatic removal of the peaks of monoisotopic 
ions (i.e., signals with the lowest m/z value within 
the isotope pattern). It is well known, however, 
that in ESI, ionisation of a single metabolite may 
result in the formation of multiple signals, such 
as various adduct or fragment ions. For example, 
in positive ESI ionisation ammonium [M + NH4]+, 
sodium [M + Na]+, or potassium adducts [M + K]+,  
are frequently formed.

Since metabolites typically occur in distinct 
concentrations, large differences in intensities (by 
up to several orders of magnitude) were observed 
with many peaks. Such differences can significantly 
affect the data variance determined treatment by 
the multivariate analysis. To modify the weights of 
the respective peaks (variables), the Pareto scaling 
of the data was performed (Ivosev et al. 2008). 
This type of scaling enabled the reduction but 
not complete elimination of the above abundance 
differences. It provides good results when applied 
to LC-MS data because it takes into account that 
larger peaks can be more reliable, but all variables 
are equivalent. The scaling of the data was not 
performed for the set No. 2, the log scaling when 
applied to LC-MS data (intensity) yielded less 
informative results. The detection of correlations 
between different features in a set of feature vec-
tors is a very important data mining task because 
the correlation indicates a dependency between 
the features or some association of the cause and 
effect between them (Böhm et al. 2004). Our 

simplified approach was based on a combination 
correlation matrix (20 × 20) resulted from the 
factor analysis of LC-MS data (20 maize varieties, 
2613 peaks, peak intensity) and PCA. Therefore, 
this multivariate analysis is not affected by large 
differences in the peaks intensities.

Chemometric analysis

In the next step, principal component analysis 
(PCA) was applied to the pre-processed experi-
mental data. This unsupervised pattern recognition 
technique represents a highly useful and widely 
employed tool for the interpretation of complex 
data. PCA allows the dimensionality reduction 
and visualisation of the intrinsic patterns present 
in the original data in the form of a few principal 
components (PCs) while retaining the maximum 
possible variability (Beruetta et al. 2007). In this 
study, PCA was used to explore the differences in 
LC-MS metabolomic fingerprints of leaves origi-
nating from various varieties of both transgenic 
and conventional maize. The sample leaves ex-
tracts were characterised by LC-MS metabolomic 
fingerprints that were processed as described 
above. As can be seen in Figure 1, two relatively 
well-resolved sample clusters of the respective 
maize varieties were formed in the PCA space 
defined by the first and second principal com-
ponents calculated as based on sample set No. 1. 
The separation of these samples clearly documents 
the differences in their metabolomic fingerprints. 
These differences are apparently linked to changes 
in the metabolites concentrations. The differences 
between the samples of the same variety are in-

Figure 1. Two dimensional PCA scores plot showing as-
sociation between metabolomic fingerprints of two maize 
varieties represented by 10 samples per cultivar (each 
cultivar forms a specific group)
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duced by varying micro-environmental and soil 
conditions. As shown in the two-dimensional PCA 
graph, the metabolomic profiles of ten different 
leaf samples representing identical varieties were 
closer to one another than to the set of profiles 
derived from the other varieties. The two sets 
did not overlap, which proved the potential of 

the technique to differentiate between cultivars, 
thus we proceeded to analyse the data obtained 
by analysis of the sample set No. 2.

As can be seen in the three-dimensional scores 
plot (Figure 2), the PCA grouped the examined 
varieties according to their origins, i.e. according 
to the respective breeding company by which the 

Figure 3. Results of cluster 
analysis for LC-MS data (peak 
intensities) of 10 transgenic 
(marked with an asterisk) 
and 10 conventional maize 
varieties (20 maize varieties, 
2613 peaks)

Figue 2. Three dimensional principal 
component analysis based on correlation 
matrix (20 × 20) resulted from factor 
analysis of LC-MS data (20 maize varie-
ties, 2613 peaks, peak intensity) 

White circles – convential maize variety; 
black circles – GM-maize variety
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respective variety was released. This finding was 
also explicitly documented by the CA (Figure 3). 
The first, second, and third principal components 
explained for 55.1, 19.4, and 22.3% of the data 
variance, respectively. The MON 810 varieties 
were in the PCA scores plot closer to one another 
compared to conventional varieties, which indi-
cated on their similar genetic basis. This finding 
was expected as all GM MON 810 descended from 
a single modified line. Also, the company may use 
different types of germplasm in their breeding 
program. Although the GM varieties seem to be 
closer to one another, they do not exceed the vari-
ability range that was calculated for the conven-
tional varieties. The range of values representing 
maize leaves metabolome is documented by the 
distance of Jokari CS variety from the other GM 
and conventional varieties (Figure 3).

As two sets of varieties were used in this study, 
one representing two varieties GM and conven-
tional, each represented by multiple samples, and 
the second several GM and conventional varie-
ties, we were able to demonstrate the capability 
of metabolomics-based approach to differentiate 
efficiently between the maize varieties, and to trace 
their relationships on the metabolomic level. No 
significant correlation was found between the meta-
bolic profiles measured at the given developmental 
stage and agronomically important traits, namely 
earliness, yield or use of the varieties (silage, grains).

We were not able to find any specific patterns/
signal typical for GM varieties even though these 
were cultivated under the same environmental 
conditions as their conventional counterparts. 
Moreover, as the ranges of the metabolite intensi-
ties detected in individual GM and conventional 
varieties overlapped, it can be expected that in 
the case of equivalence the metabolite concentra-
tions in GM varieties will not differ from those in 
the conventional cultivars and will not be shifted 
in PCA plot with respect to them (EFSA 2011). 
Our findings support the opinion of equivalence 
of MON 810 with conventional maize. However, 
studies under different environmental conditions 
with a higher number of replicates are necessary.

In general, the composition of the leaf tissue may 
have an impact on the safety of GM plants. Much 
more data for the composition analysis of maize 
kernels are available (Kuiper et al. 2001; Cellini 
et al. 2004). The presented approach allows large-
scale evaluation of leaf metabolome and can provide 
extensive data for GMO safety assessment.

CONCLUSIONS

UHPLC-QTOFMS technique was demonstrated 
to hold a great potential in discriminative metabo-
lomics of conventional and Bt transgenic maize 
varieties. The processing of metabolomic finger-
prints (mass spectra) by advanced chemometric 
methods demonstrated the capability of this ap-
proach to classify various maize varieties in both 
GM and non-GM sample sets. On the other hand, 
distinguishing MON 810 event was not possible. 
This means, in fact, that ‘substantial equivalence’ 
principle has been confirmed.
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