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Abstract

Yu L. Y., Zhang X., Jin J., Che S., Yu L. (2011): Simultaneous determination of chloride, bromide and 
iodide in foodstuffs by low pressure ion-exchange chromatography with visible light detection. Czech 
J. Food Sci., 29: 634–640.

An ion-exchange chromatography method with visible light detection was developed for the simultaneous determina-
tion of chloride, bromide, and iodide in foodstuffs. They were separated by means of low pressure ion-exchange chro-
matography using 4.0mM sodium carbonate solution as the eluent and a low pressure ion-exchange chromatography 
column as the separation column. The detection limits of chloride, bromide and iodide were 0.011 mg/l, 0.002 mg/l, 
and 0.023 mg/l, respectively. The relative standard deviations (RSDs) of the peak area were smaller than 2.9%. The 
recoveries were between 98.61% and 105.65%. Unlike the traditional methods, this validated method is inexpensive 
and stable.
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Most analytical approaches reported for chloride, 
bromide, and iodide determination have shortcom-
ings to some extent. The traditional methods, such 
as titration and colorimetric measurement, with 
a relatively low sensitivity and using lots of toxic 
reagents (e.g., silver nitrate, mercuric thiocyanate), 
can determine one substance only.

Ion-exchange chromatography (IEC) was first 
introduced about 33 years ago and has become 
a well-established technique. The simultaneous 
analysis of common anions such as chloride (Cl–), 
bromide (Br–), iodide (I–), nitrate, phosphate, or 
sulfate is the most important IEC routine appli-
cation. These solutes are usually determined by 

ion-exchange separation with suppressed conduc-
tivity detection (Tucker & Flack 1998; Kapinus 
et al. 2004; Zhe et al. 2006). IEC with suppressed 
conductivity detection permits the use of higher 
capacity stationary phases and higher ionic strength 
eluents than those which use conductivity without 
chemical suppression detection methods, and 
provides a greater variation in ion-exchange selec-
tivity. The other common means of detection are 
conductivity without chemical suppression (Zhou 
& Guo 2000) and direct or indirect UV detection 
(Quattrocchi et al. 2001; Hu et al. 2002). How-
ever, the visible light detection has not been used 
to detect Cl–, Br– and I– simultaneously. 
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Commonly, the analyte ions monitored by optical 
(visible light) detector are visible light-absorbing 
ions such as Cu2+ or Fe3+. For non-visible light-
absorbing ions, the indirect detection and/or post-
column derivatisation with subsequent visible light 
measurement has been considered to be a useful 
detection method.

This paper describes a low pressure ion-exchange 
chromatography (LPIEC) with an optical detector 
to detect simultaneously Cl–, Br–, and I– by indirect 
detection. LPIEC is a type of ion chromatography 
without the suppressor column and working at 
a low pressure of 1.96 × 105 Pa to 2.94 × 105 Pa 
(Jiang et al. 1999; Zhou et al. 2007). Cl–, Br–, and 
I– are separated by LPIEC column and then each of 
them catalyses the oxidative discoloration of indigo 
carmine by potassium bromate (KBrO3) in acidic 
media and heating condition. The spectrophoto-
metric measurement can be applied satisfactorily 
to the detection of Cl–, Br–, and I–.

MATERIAL AND METHODS

All the analyses were conducted on Low Pres-
sure Ion Chromatographic Instrument ( Jiang et 
al. 1999; Zhou et al. 2007) consisting of a low 
pressure four-way peristaltic pump (Shanghai 
Huxi Analytical Instrument Plant, Shanghai, P.R. 
China), LPIEC column, six-way automatic injec-
tion valve, optical flow cell, optical detector, and 
homothermic heater (installing a reaction coil). A 
HW-2000 Chromatography workstation (Qianpu 
software Co., Ltd., Zhehang, P.R. China) was used 
for the system control and data collection. The 
experimental conditions used for the determina-
tion of Cl–, Br–, and I– are given in Table 1.

Reagents. All the chemicals used were of ana-
lytical grade quality (Chengdu Kelong Chemical 
Reagent Factory, Sichuan, P.R. China). The stand-
ards were prepared daily by diluting 1000 mg/l ICP 
standard solutions. The eluent (4.0mM Na2CO3) 
was prepared from 1M sodium carbonate aqueous 
solution. The mixture of Indigo Carmine and sul-
furic acid solution was marked as colour solution 
R1 and was prepared from 1mM Indigo Carmine 
aqueous solution and 6M sulfuric acid (H2SO4). 
Concentration KBrO3 solution was marked as 
colour solution R2 and was prepared from 0.1M 
KBrO3 aqueous solution. The above solutions were 
prepared using deionised water with a resistance 
of 18.2 MΩ (Molecular, Shanghai, P.R. China). 

Sample preparation. All samples including for-
tified cookies (No. 1), kelps (No. 2), and radishes 
(No. 3) were bought in the morning market of 
Chengdu city. The fortified cookies were pulverised 
and sieved (80 mesh); fresh kelps and radishes were 
carefully rinsed with deionised water, and then the 
deionised water on the surface of the kelps and 
radishes was removed by a centrifuge, at last the 
kelps and radishes were separately and completely 
ground by a mill. In the sample preparation, all the 
deionised water was freed from dissolved oxygen 
by boiling and was adjusted to pH 10, to prevent 
the oxidation of Br– and I–.

The processed samples weighing 25.00 g each were 
added to 150 ml flasks with approximately 80 ml 
water, which were subsequently shaken for 30 min 
in supersonic wave, thereafter, the mixtures were 
diluted to a final volume of 100 ml with deionised 
water. All samples were filtered before use.

Procedure. The schematic representation of the 
LPIEC setup is shown in Figure 1. The sample was 
loaded via the four-way peristaltic pump and six-
way automatic injection valve on a 300 µl sample 
loop. After injection, the separation of the analyte 
ions took place in the ion-exchange column by 
passing the Na2CO3 eluent (4.0mM Na2CO3). The 
separated ions with the eluents R1 and R2 mixed 
by mixing coil then came into the reaction coil, in 
which the separated ions accelerated the reaction 
of R1 and R2 at 85 ± 0.5°C. The reaction solu-

Table 1. Experimental conditions for Cl−, Br−, and I− de-
termination in LPIEC

Analytical separation

LPIEC column
Anion-exchange resin column (0.6 cm × 
13 cm, I.D. 30−35 μm), exchange capac-
ity 0.001 meq/g

Eluent 4.0mM Na2CO3

Flow rate 0.70 ml/min

Injection volume 300 µl

Chemical reaction variables

R1 0.15mM Indigo Carmine  
and 1.1M H2SO4

R1 Flow rate 0.25 ml/min

R2 32.0mM KBrO3

R2 Flow rate 0.25 ml/min

Reaction coil 1.4 m

Optical detector

Wavelength 610 nm
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tion passed through the optical detector, where 
the peaks of Cl–, Br–, and I– were recognised at a 
wavelength of 610 mm.

RESULTS AND DISCUSSION

Detection principle

The catalytic reaction was monitored spectropho-
tometrically by measuring the change in absorbance 
of the reaction mixture. Only the changes in the 
ions (Cl–, Br–, and I–) concentrations influenced 

the rate of the oxidative, discoloration of indigo 
carmine.

The method is based on the observation of dis-
coloration. Without catalysts, the rate of oxidative 
discoloration of indigo carmine by KBrO3 is very slow 
in acidic media. The rate of discolouring oxidation of 
indigo carmine by KBrO3 becoms faster when Cl–, 
Br–, or I– is added into the acidic reaction solution. 
The reason is that all of Cl–, Br–, and I– coordinate 
with Indigo Carmine and form a six-member ring 
intermediate, which can weaken the double bond 
force of the two 3-sulfo indoles full-ketone. There-
fore, the indigo carmine easily oxidises by KBrO3 
when Cl–, Br–or I– is present in the acidic reaction 
solution (Schema 1).

In order to find the most appropriate wave-
length for the analysis on the LPIEC, the effect 
of wavelength on the peak height was studied in 
the range from 400 nm to 700 nm using the Spec-
trum UV2800 (You Nike Ltd. Co., Shanghai, P.R. 
China). Figure 2 shows the absorbance spectra of 
three different solutions. The standard solutions 
of Cl–, Br–, and I– respectively, accelerated the 
fading through oxidation reaction of R1 and R2 
in the heating condition. The greatest absorbance 
intensity of the solutions was at 610 nm, which 
was selected for further work.

Effect of the length of LPIEC column. The rela-
tively short LPIEC column (invented by Professor 
Xinshen Zhang) was selected in the study for the 
following two advantages: the reduced system 
pressure, and improved sensitivity and precision. 
The column lengths of 11–15 cm were tested, the 
results are shown in Figure 3. When the length of 
the column was shorter than 13 cm, the separation 
of Cl– and Br– was poor. However, if the length of 
the column exceeded 13 cm, the retention time 

S – sample; C – Na2CO3 eluent; R1 – Indigo Carmine and 
H2SO4 solution; R2 – KBrO3 solution; P – four-way peristaltic 
pump; V – six-way automatic injection valve; L – reaction 
coil; M-Mixing coil; H – homothermic heater; F – optical 
flow cell; D – optical detector

Figure 1. Schematic diagram of the LPIEC system
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(3) Mixture solution of 0.15mM Indigo Carmine solution, 1.1M H2SO4, 32.0m M KBrO3 and 5.00 mg/l Cl−

(4) Mixture solution of 0.15mM Indigo Carmine solution, 1.1M H2SO4, 32.0mM KBrO3 and 2.00 mg/l Br−

Putting the above mixture solution into a temperature of 85 ± 0.5°C constant temperature water bath, it was heated for 2 min, 
and then quickly taken out and put in the cold water for 3 min to end the reaction. At last, the absorbance spectra were 
obtained by the Spectrum UV2800

Figure 2. Absorbance spectra

increased. Thus, the length of the column of 13 cm 
was chosen for further work.

Optimisation of separation conditions. The 
eluent is critical for the analysis by ion-exchange 
chromatography. Sodium carbonate (Na2CO3) was 
selected as the eluting solution in this study. Differ-
ent concentrations of Na2CO3 (2.0, 3.0, 4.0, 5.0, and 
6.0mM) were studied to determine the optimum 
concentration, with an injection volume of 300 µl 
and using the visible light detection at 610 nm. 
The results showed that the separation of Cl–, Br–, 
and I– was worse at higher concentrations while 
the low concentrations resulted in a broad peak 
shape. The separation of these ions with 4.0mM 
Na2CO3 appeared to be optimum. Under the opti-
mum concentration, different flow rates (0.5, 0.6, 
0.7, 0.8, and 0.9 ml/min) were set to investigate the 
impact of the flow rate on the separation. A faster 
rate resulted in peaks, overlapping while the lower 
was the rate, the longer was the overall time, as well 
as the worse was the peak shape. Therefore, it was 
suggested to use a flow rate of 0.7 ml/min.

Effect of reaction temperature. To obtain the best 
overall reaction, the effect of the reaction tempera-
ture was also investigated in the range of 65–87°C 
(Figure 4). The peaks became higher with the reac-

tion temperature increased from 65–87°C. When the 
temperature was higher than 85°C, the reproduc-
ibility of the system peak height became poor, and 
the flow path was prone to bubbles formation, which 
impacted on the stability of the system determination. 
To maintain the system stability, the temperature of 
85 ± 0.5°C was chosen for further study.

As a consequence, we chose the length 13 cm 
for the LPIEC column, 4.0mM Na2CO3 as the 
eluent with a flow rate of 0.7 ml/min, and 85 ± 
0.5°C as the reaction temperature. Under the op-
timised experimental conditions, the analytes in 
the solution were well separated within 14 min 
(Figure 3c).

Method validation

Linearity was investigated using the stock solu-
tion containing the analytes, which was diluted 
serially. Eight concentrations of the three analytes 
solution were injected in triplicate and the calibra-
tion curves were constructed by plotting the peak 
height (A, mV) versus the concentration (C, m/l) 
of each analyte. The detection limits were esti-
mated as the mean of the blank sample plus three 
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Figure 4. Effect of reaction temperature

Conditions: Cl– 10.0 mg/l, Br– 2.0 mg/l, and I– 10.0 mg/l; 
eluent 4.0mM Na2CO3 with a flow rate of 0.7 ml/min; tem-
perature 85 ± 0.5°C

Figure 5. Chromatogram of mineral water
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Figure 3. Effect of LPIEC column length
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Table 2. Analytical characteristic of Cl−, Br−, and I−

Analyte Linear range 
(mg/l) Calibration equation Correlation 

coefficient
Detection limit 
(mg/l) (S/N = 3)

RSD (%) 
(n = 10)

Retention time 
(min)

Cl− 0.15–35.0 A = 45.51C − 1.45 0.9992 0.011 2.96 6

Br− 0.03–5.0 A = 486.24C − 74.33 0.9991 0.002 2.12 7.5

I− 0.10–25.0  A = 49.71C − 59.64 0.9990 0.023 2.45 14

RSD = relative standard deviation

times the standard deviation obtained on the blank 
sample. The precision was evaluated by performing 
ten replicate analyses of the standard solution at the 
concentrations of 10.0 mg/l for Cl–, 2.0 mg/l for B–, 
and 10.0 mg/l for I–. The results are illustrated in Table 
2. Under the optimised experimental conditions, all 
three analytes showed perfect linearity. 

Sample determination

To illustrate the application of the method de-
veloped, three aquatic samples (No. 1 Fortified 
Cookies, No. 2 kelps, and No. 3 radishes) from 
Chengdu, P.R. China were collected for the de-
termination. Figure 5 shows the chromatogram of 
the No. 3 radishes. The contents of the analytes in 
real samples were determined using the external 
calibration method. Suitable amounts of Cl–, Br–, 
and I– standards were added to the real samples of 
known contents and the mixtures were analysed 
using the proposed procedure. Recovery was ex-
pressed for each component as the mean percent-
age ratio between the measured and the added 
amounts. The results are shown in Table 3.

CONCLUSIONS

This method proves that with the use of visible 
light detection, ion-exchange chromatography 
can detect Cl–, Br–, and I– at the same time; the 
method has shown good correlation between and 

high accuracy of the results, and it is also easily 
operated in comparison to other methods; it pro-
vides a simple and efficient procedure for analysing 
the above ions in foodstuffs. The Low Pressure 
Ion Chromatographic Instrument employed in 
this study not only has a low price ($4000 per in-
strument), but is also portable occupying a small 
volume (dimension of 25 cm × 20 cm × 20 cm).
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