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Abstract

Chayjan R.A., Esna-Ashari M. (2011): Effect of moisture content on thermodynamic characteristics 
of grape: mathematical and artificial neural network modelling. Czech J. Food Sci., 29: 250–259. 

Artificial neural networks (ANNs) and four empirical mathematical models, namely Henderson, GAB, Halsey, and 
Oswin were used for the estimation of equilibrium moisture content (EMC) of the dried grape (black currant). The 
results showed that the EMC of the grape were more accurately predicted by ANN models than by the empirical 
models. The heat and entropy of sorption of the grape have separately been predicted by two mathematical models 
as a function of EMC with desirable coefficient of determination (R2 ≈ 0.99). At the  EMC above 7% (d.b.), the heat 
and entropy of the grape sorption were smoothly decreased, while they were the highest at the moisture content of 
about 7% (d.b.). Better equations could be developed for the prediction of the heat of sorption and entropy based on 
the data from the ANN model.
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Abbreviations 
aw – water activity (decimal); a, b, c, d, e, k, Xm – constants; bj – bias of jth neuron for networks; EMC – equilibrium 
moisture content (% d.b.); Emr – mean relative error; ∆H – heat of sorption (kJ/mol); m – number of output layer neurons; 	
M – number of training patterns; MSE – mean square error; N – number of training patterns or number of output neu-
rons; Ro – universal gas constant (8.315 kJ/kmol/K); R2 – determination coefficient; SDmr – standard deviation of mean 
absolute error; Sip – network output in ith neuron and pth pattern; Sk – network output for kth pattern; ∆S – entropy 	
(J/mol/K); T– environmental absolute temperature (K); Tip – target output at ith neuron and pth pattern; Tk – target output 
for kth pattern; Wij – weight of between ith and jth layers; Yi – ith output neuron

Dried grape is one of the most important Iranian 
horticultural products with a high export value. 
The standard processes of post harvest, such as 
drying, packaging, and storage of the grapes, would 
guarantee the quality of the product, increasing 
its export value as well as producer’s income. Post 
harvest quality of the grape, with a high moisture 
content of grains at the harvesting time, is very 
important.

Aeration, which relates the air relative humidity 
and moisture content, is essential for optimising, 
the dried grape quality. Energy consumption of the 
drying process with regard to the final moisture 
content is a criterion for the selection of the dryer 
or type of drying process. Equilibrium moisture 
content (EMC), defined as the moisture content of 
the respective agricultural material in equilibrium 
with the environmental conditions (air temperature 
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and air relative humidity), is a vital parameter in 
studying the drying process. Studies have showed 
that, if the two above environmental factors are not 
controlled, the mold activities increase (Brooker 
& Bakker-Arkema 1992).

EMC is a durability index and any change in 
the quality of foods or agricultural products dur-
ing storage and packaging is crucialy important 
(Veltchev & Menkov 2000). Fundamental re-
lationship between EMC and relative humidity 
of foods and agricultural products is known as 
sorption isotherms (Palipane & Driscoll 1992). 
Sorption characteristics are used for designing, 
modelling, and optimising some post harvest 
processes such as drying, aeration, and storage 
(Labuza 1975; Bala 1997). Pahlevanzadeh et 
al. (2000) have investigated the moisture sorption 
isotherms of the grape (cultivar Thompson Seed-
less) at low temperatures. In their research, the 
sorption isotherms of the grape were determined at 
temperatures between 20°C to 40°C, Halsey model 
giving the best results for the EMC prediction. 

Gabas et al. (1999) proposed a model for wa-
ter absorption of Italian grape cultivars. They 
determined the moisture sorption isotherm for 
temperatures between 35°C to 75°C and found 
that GAB model was the best for EMC prediction. 
Post harvest quality of the grape, considering high 
moisture content of grains at the harvesting time, 
is very important. 

Sorption isotherms of agricultural products are 
usually sigmoid-shape curves difficult even to 
draw and manipulate with (Bala 1997). Numer-
ous complex mathematical models for describing 
sorption isotherms have been developed by many 
researches (Kaymak-Ertekin & Gedik 2004; 
Reddy & Chakraverty 2004; Cervenka et al. 
2008; Blahovec & Yanniotis 2009; Yanniotis 
& Blahovec 2009). Non-linear direct optimisa-
tion techniques are required for the estimation of 
these model parameters. Such estimations reduce 
the accuracy and the shape of the isotherms as 
well as the reliability of the predictions over the 
whole range of the relative humidity. Therefore, 
research is necessary to find alternative compu-
tational methods calculating the relationships of 
agricultural products isotherms for increasing the 
accuracy and reliability of predictions. Artificial 
neural network (ANN) can be a suitable alterna-
tive for this purpose.

ANN is one of the soft computing methods. It 
uses simple processing elements named neurons. 

ANNs tries to discover the inherent relationship 
between the parameters through the learning 
process. It creates a mapping between the input 
space (input layer) and target space (output layer). 
The processing of the input data is carried out 
in hidden layer/layers. Training is a process that 
finally results in learning. Each network is trained 
with the presented patterns. During this process, 
the connection weights between layers is changed 
until the differences between the predicted val-
ues and the target (experimental) are reduced to 
permissible limits. Under the aforementioned 
conditions, the learning process was performed. 
Trained ANN can be used for the rediction of the 
outputs of new unknown patterns. ANNs were 
used for the modelling of drying by some workers 
(Huang & Mujumdar 1993; Bala et al. 2005; 
Movagharnejad & Nikzad 2007; Poonnoy et 
al. 2007; Lertworasirikul & Tipsuwan 2008). 
Other researchers used the ANN model for model-
ling black tea and grape starch sorption isotherms 
(Panchariya et al. 2002; Peng et al. 2007). In all 
of these studies, the ANN models were found to 
be better than the mathematical models.

The heat of sorption is an important parameter 
for drying and for the measure of the water-solid 
binding strength. It can be used to determine 
the energy requirements and to show the state 
of water within the dried material. The moisture 
content of a material, at which the heat of sorption 
reaches the value of the latent heat of sorption, is 
often considered as the indication of the amount 
of bound water existing in the material (Wang & 
Brennan 1991). 

Researchers have proposed an empirical expo-
nential relationship between the heat of sorption 
and material moisture content for some fruits and 
also a mathematical model for pineapple (Tsami 
1994; Hossain et al. 2001; Simal et al. 2007; Chay-
jan 2010; Chayjan & Esna-Ashari 2010). The 
differential entropy of a material is proportional 
to the number of sites at a specific energy level 
(Madamba et al. 1996). Madamba et al. (1996) 
adopted an exponential relation to describe the 
entropy of garlic sorption as a function of moisture 
content. McMinn et al. (2004) reported that the 
net isosteric heat of sorption and differential en-
tropy of potato decreased with increasing moisture 
content, and these were adequately characterised 
by an empirical model. 

Literature survey showed that no detailed study 
has so far been carried out on the prediction of the 
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sorption isotherm of Black Currant grape cultivar 
using ANN method. Also, the heat of sorption and 
differential entropy models of the grape (Black 
Currant) are not available in the literature. The 
objectives of this study were: (1) to develop both 
ANN and empirical models on experimental data of 
sorption, (2) to find an improved empirical model 
for the heat of sorption, and (3) to find a new em-
pirical model for the entropy of the grape.

MATERIAL AND METHODS

Experimental Setup and Mathematical Models. 
Fresh grape samples (Black Currant) were supplied 
by a farm in the Hamedan province, Iran. The 
samples were dried to the moisture content of 15% 
(d.b.) by open sun drying method. Salt saturated 
solutions including LiCl, KC2H3O2, MgCl2, K2CO3, 
NaBr, NaNO2, NaCl, and K2SO4 (all from Merck, 
Darmstadt, Germany) were used to provide the 
needed relative humidity. Ensuring such relative 
humidities by the saturated solutions has been re-
ported in the literature (Bala 1997). Besides, these 
values were also checked using a hygrometer. 

One of the most common methods used for 
EMC determination is the gravimetric one, hav-
ing high precision and not needing a complex 
implement (Spiess & Wolf 1983). Fifty grams of 
the sample were considered as an experimental 
specimen. Each sample was placed into a Petri 
dish (90 mm in diameter). All dishes were then 
transferred into a desiccator and kept for five 
weeks while they were weighed every single day. 
Equilibrium was considered when the difference 
between two successive weighings was lower than 
0.001 g (Ayranchi et al. 1990; Gabas et al. 1999). 
Three to four weeks were needed for the samples 
to reach equilibrium.

The temperature needed for the experiment was 
ensured by using a sample box with a temperature 
controller to maintain the temperature. An electric 
fan was fitted to circulate the air inside the box 

where: 
EMC	– equilibrium moisture content in % d.b.
aw 	 – water activity in decimal
T 	 – environmental absolute temperature in K
R 	 – universal gas constant (8.314 J/mol/K)
Xm, k, a, b, c, d, e – constants for different materials cal-

culated by the experimental method

The supremacy of each model for the prediction 
of EMC is expressed by three indices of coefficient 
of determination (R2), mean relative error (Emr), 
and standard error (SE). The fit was performed 
by non-linear regression based on the minimisa-
tion of the least square technique by Statistica 8 
software.

Artificial neural networks modelling. In this 
research, two types of Multi layer perceptron 
(MLP) neural network, namely the feed and cas-
cade forward networks, were utilised. Also, several 
learning algorithms were used. Feed Forward neural 
network (FFNN) consists of one input layer, one or 
several hidden layers, and one output layer (Jam 
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Figure 1. Neural network topology of equilibrium moisture content of grape
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to accelerate the moisture transfer between the 
samples and air inside the box. In order to deter-
mine the final moisture content, the equilibrated 
samples were placed in a vacuum oven (70°C and 
150 mbar) for 6 hours. All the experiments were 
conducted in three replications. 

Four common mathematical models were used 
for the prediction of the sorption isotherms in 
this study as follows:



	 253

Czech J. Food Sci.	 Vol. 29, 2011, No. 3: 250–259

& Fanelli 2000). For learning this network, back 
propagation (BP) learning algorithm was used. 
In the case of BP algorithm, the first output layer 
weights were updated. The weight coefficient was 
updated by the weight values and learning rules. 
During training this network, calculations were 
carried out from the network input toward out-
put and the values of error were then propagated 
to the preceding layers. Cascade forward neural 
network (CFNN) is similar to FFNN in using the 
BP algorithm for weights updating, but the main 
symptom of this network is that each layer neuron 
relates to all previous layer neurons. The Leven-
berg-Marquardt and Bayesian algorithms were 
used for updating the network weights. 

Networks with two neurons in the input layer 
(air relative humidity and air temperature) and one 
neuron in the output layer (EMC) were designed. 
Figure 1 shows the considered neural network 
topology and interconnections between the input 
and output parameters. Boundaries and levels of 
the input variables are shown in Table 1. Neural 
network toolbox (ver. 4.1) of Matlab software was 
used in this study. Various transfer functions were 
used to reach the optimised status (Demuth & 
Beale 2003): 

	 (Logarithmic sigmoid-LOGSIG)	 (5)

	
	     (Hyperbolic tangent sigmoid-TANSIG)	 (6)

Yj = Xj	 (Linear-PURELIN) 	 (7)

where: Xj – computed as follows: 

	 	 (8)

where:
m 	 – number of output layer neurons
Wj 	– weight between ith and jth layers
Yj 	 – ith neuron output
bj 	

– bias of jth neuron for FFNN and CFNN networks

The experimental data obtained at 30°C, 40°C, 
and 60°C were selected for the training network 

to find suitable topology and training algorithm. 
Also, the data obtained from the experiment at 
50°C were used for testing the trained network.

The following index of the mean square error 
has been defined to minimise the learning error 
(Demuth & Beale 2003): 

 	 (9)

where:
MSE 	– mean square error
Sip 	 – network output in ith neuron and pth pattern
Tip 	 – target output at ith neuron and pth pattern
N 	 – number of output neurons
n 	 – number of the training patterns

To optimise the selected network from the prior 
stage, the secondary indices were used as follows:

	 	 	

(10)

	 	 	 (11)

SDmr

	 	 	
(12)

where:
R2	 – determination coefficient
Emr	 – mean relative error
SDmr	 – standard deviation of mean absolute error
Sk	 – network output for kth pattern
Tk	 – target output for kth pattern
n 	 – number of the training patterns. To increase the 

accuracy and processing velocity of the network, 
the input data were normalised at the boundary 
of [0, 1]

Heat and entropy computation. The heat of 
sorption can be determined by the Clausius-Clay-
peron’s equation (Rao & Rizvi 1995; Hossain et 
al. 2001; Phomkong et al. 2006):
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Table 1. Input parameters for ANNs and their limits for the prediction of equilibrium moisture content of grape

No. of levels High limit Low limit Input variables

4 60 30 environmental air temperature (°C)
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 	 	 	 (13)

The following relationship is used for the heat 
and entropy of sorption in thermodynamics:

	 	 	 (14) 

When ln(aw) are plotted against 1/T, a straight 
line graph is obtained with the y-intercept of 	
∆S/Ro. From the values of this y-intercept and Ro, 
∆H and ∆S can be computed.

RESULTS AND DISCUSSION

Equilibrium curves (moisture content 
and water activity)

The average of EMC versus water activities of salt 
solutions is shown in Figure 2. These curves are 
the moisture sorption isotherm of the grape at four 
temperature levels of 30°C, 40°C, 50°C, and 60°C 
in the range of relative humidity 10.95–83.62%. 
These curves are the moisture sorption isotherm 
of dried grape. As depicted from this figure, over 
the whole range of water activity EMCdecreased 
with increasing temperature. The increase of water 
activity caused an increase in the grape EMC at 
all temperatures. The changes in water activity of 
more than 0.5 are quite obvious. 

The dried grape, like other high glucose dried 
fruits, absorbs less moisture at low water activity 
and absorbs more moisture at high water activity. 
Because of the moisture absorbing properties of 
biopolymers in all food materials, the curve slope 
increases and this phenomenon is also seen in the 

dried grape because of its high absorbing moisture 
rate which is in turn related to glucose. At low 
water activity, physical properties of glucose have 
no significant effect on the moisture absorption. 
Amorphous glucose absorbs more moisture as 
compared with crystal glucose. 

Mathematical models

The results of empirical models fitting at the tem-
peratures of 30°C, 40°C, 50°C, and 60°C are shown 
in Table 2. For these temperatures, Halsey model 
produced the best results, including the highest R2, 
the lowest Emr and SDmr. Therefore, this model is 
capable of producing the best results for the four 
temperature levels that could be used for the EMC 
estimation of the grape, and heat and entropy of 
sorption at various temperatures and water activi-
ties. Any empirical model has an equation with the 
constants which are presented in Table 2. 

ANN models. FFNN and CFNN networks with 
a BP algorithm, various transfer functions, and 
training rules were evaluated for mapping between 
the inputs and outputs patterns. The best values 
obtained from the training of the networks with 
different topologies are given in Table 3.

As found, the best results were obtained with 
FFNN network, TANSIG-TANSIG-TANSIG thresh-
old function, and 2-3-3-1 topology. This composi-
tion produced MSE = 0.00059, R2 = 0.9991, Emr= 
4.993 and SDmr = 0.5997 converged in 69 epochs. 	
The R2 of optimised ANN and real errors are pre-
sented in Figure 3.

The comparison of the ANN method and the 
mathematical model results showed that the ar-
tificial neural network had the supremacy in the 
equilibrium moisture content prediction for the 
grape. The optimised artificial neural network 
topology was therefore used for the prediction of 
the grape heat and entropy of sorption.

Grape heat and entropy of sorption

Equilibrium moisture content values of the grape 
at the four temperature levels (30°C, 40°C, 50°C, 
and 60°C) and eight moisture levels (7%, 10%, 13%, 
16%, 19%, 22%, 25%, and 28%) were computed using 
the optimised neural network model. The values 
of ln(aw) versus 1/T were plotted for the grape at 
constant moisture contents (Table 4). These values 
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were estimated by the optimised ANN. The slopes of 
the lines at constant moisture contents were the net 
isosteric heat of sorption for the grape. The slopes 
were determined by linear regression analysis. The 
heat of sorption for the grape at different moisture 
contents is presented in Figure 4. 

The heat of sorption was found to decrease with 
increasing moisture content. Water was absorbed in 
the most accessible locations on the exterior surface 
of the solid. As the moisture content increases, 
the material swells and due to it new high-energy 
sites are opened up for water to bind. This causes 
the heat of sorption to increase as with moisture 
content decrease. This trend is similar to those 

reported for agricultural, food, medicinal, and 
aromatic plants (Hossain et al. 2001; Lahsasni 
et al. 2004; Phomkong et al. 2006; Chayjan et 
al. 2010). The net isosteric heat of sorption was 
found to fit a power relation. The following equa-
tion was developed for the grape:

∆H = 9.2513(EMC)–0.7489    R2 = 0.9898	 (15)

This relation showed that the heat of sorption 
for grape increases following a power relation-
ship. This relation has also a better fit than the 
exponential relation previously developed for some 
agricultural products (Janjai et al. 2006; Chayjan 
et al. 2010). The relationship between the heat of 
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Figure 3. Predicted values of EMC using ANNs versus experimental values for testing data set (50°C): (a) real values 
of experimental, predicted and error data (b) coefficient of determination

(a)

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9
Number of data

Eq
ui

lib
ri

um
 m

oi
st

ur
e 

co
nt

en
t

(%
 d

.b
.)

Experiment

Predict

Real error

Table 2. Coefficients and outputs of mathematical models for all temperatures of desorption isotherm of the grape 

Model Temperature (°C) a b c d or k e or Xm MSE R2 Emr

Oswin

30 21.445 0.645 – – – 3.46 0.9882 14.86
40 19.894 0.681 – – – 2.28 0.9914 11.11
50 19.489 0.715 – – – 1.61 0.9912 11.68
60 12.075 0.985 – – – 0.55 0.9973 11.32

GAB

30 – – 3.211 0.970 0.540 2.66 0.9910 10.53
40 – – 1.155 0.895 17.78 2.04 0.9922 12.10
50 – – 1.162 0.950 13.73 1.46 0.9923 10.21
60 – – 1.358 0.024 10.02 1.46 0.9974 29.06

Halsey

30 13.790 0.941 – – – 2.25 0.9923 8.28
40 10.924 0.990 – – – 3.53 0.9879 9.93
50 9.816 1.027 – – – 1.31 0.9941 7.78
60 5.073 1.230 – – – 0.53 0.9985 7.22

Henderson

30 –0.075 0.809 – – – 5.34 0.9822 18.88
40 –0.084 0.780 – – – 2.79 0.9908 16.17
50 –0.085 0.774 – – – 2.62 0.9901 16.99
60 –0.151 0.630 – – – 2.02 0.9912 23.05
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sorption and EMC for some agricultural materials 
is given in Table 5. It is obvius that this relation for 
longan, corn, and sesame seed is a power equation 
model while litchi and mango correspond to the 
exponentioal equation model. This is because of 
the difference between the desorption properties 
of agricultural material tissues.

The maximum values of sorption heat for some 
agricultural products reported by researchers were 
compared with the grape (this study) and are given 
in Table 6. The lower values of the grape heat of 
sorption compared to the other agricultural prod-

ucts was due to the differences in the chemical 
composition and tissues of the grape. The heat of 
sorption of the grape is significantly high, while 
its equilibrium moisture content is lower than 
10% (d.b.). This can be explained by the fact that, 
at the moisture content above 10% (d.b.), water 
is loosely bound in the grape. This implies that 
the grape needs less energy at a higher moisture 
content (above 10% d.b.) for drying but needs more 
energy at lower moisture contents, especially for 
storage. After processing, the dried grape with 
16% (d.b.) moisture content is stored (Pahlevan-

Table 3. Training algorithms for different neurons and hidden layers for networks 

Epoch SE Emr R2 MSE No. of layers 
and neurons Threshold function Training 	

algorithm Network

69 0.5997 4.993 0.9991 0.00059 2-3-3-1 TANSIG-TANSIG- TANSIG Levenberg FFNN 
23 0.845 5.521 0.9951 0.00088 2-3-2-1 TANSIG- LOGSIG-PURELIN Baisian
38 0.989 7.108 0.9918 0.00095 2-4-2-1 TANSIG –TANSIG – TANSIG Levenberg CFNN
46 0.895 6.33 0.9935 0.00092 2-3-3-1 LOGSIG - LOGSIG – PURELIN Baisian

Table 4. Calculation of ln(aw) as a function of 1/T at different moisture content in grape using artificial neural net-
work 

Equilibrium moisture 
content (% d.b.) 28 25 22 19 16 13 10 7

1/T

0.003300
0.003195
0.003096
0.003003

0.003300
0.003195
0.003096
0.003003

0.003300
0.003195
0.003096
0.003003

0.003300
0.003195
0.003096
0.003003

0.003300
0.003195
0.003096
0.003003

0.003300
0.003195
0.003096
0.003003

0.003300
0.003195
0.003096
0.003003

0.003300
0.003195
0.003096
0.003003
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Figure 4. Heat and entropy of the grape sorption at different equilibrium moisture contents: (a) heat (b) entropy
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zadeh et al. 2000), so the results showed that its 
isosteric heat at 16% (d.b.) falls into the normal 
range (1.1359 kJ/mol/K). 

The entropy of sorption of the grape is presented 
in Figure 4. It is a function of the moisture content 
and the following power type equation model was 
fitted to the data:

∆S = 31.347(EMC)0.564        R2 = 0.9929   	 (16) 

The fitted curves for the entropy prediction pro-
vided good values compared to the experimental 
ones. These results proved that entropy increased 
smootly with the increase in the moisture content. 
Because of the high glucose content of the dried 
grape, its change pattern is different compared with 
the entropy of potato tuber and melon seed as well 
as cassava (Aviara & Ajibola 2002; McMinn & 
Magee 2003; Amiri Chayjan et al. 2010). The 
entropy models for some agricultural materials 
are given in Table 5. All reported models were 
power equations. This is because of the similar-
ity of the desorption properties of agricultural 
material tissues.

The derived sorption equations of heat and en-
tropy are necessary for the calculation of humidity 
during storage of the dried grape. These results 
showed that the ANN method has supremacy 
over mathematical models because it provides 

more accurate data to develop better equations 
for isosteric heat and entropy of sorption. 

CONCLUSION

Generally, the following conclusions can be drawn 
from the experiments:
– The Halsey model produced the best prediction 

for the grape EMC. 
– The ANN model with topology of FFNN network, 

TANSIG-TANSIG-TANSIG transfer function, 
and 2-3-3-1 was the best for the prediction of 
the grape EMC. 

– The relation between the moisture content and 
heat and entropy of sorption of the grape was a 
power model. The sorption entropy of the grape 
as a function of EMC was also determined by a 
power model. 

– The grape needs less energy at a higher moisture 
content (above 10% d.b.) for drying and storage, 
but more energy at lower moisture contents. 
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