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Abstract
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A system based on acoustic resonance was developed for eggshell crack detection. It was achieved by the analysis of 
the measured frequency response of eggshell excited with a light mechanism. The response signal was processed by 
recursive least squares adaptive filter, which resulted in the signal-to-noise ratio of the acoustic impulse response reing 
remarkably enhanced. Five features variables were exacted from the response frequency signals. To develop a robust 
discrimination model, three pattern recognition algorithms (i.e. K-nearest neighbours, artificial neural network, and 
support vector machine) were examined comparatively in this work. Some parameters of the model were optimised by 
cross-validation in the building model. The experimental results showed that the performance of the support vector 
machine model is the best in comparison to k-nearest neighbours and artificial neural network models. The optimal 
support vector machine model was obtained with the identification rates of 95.1% in the calibration set, and 97.1% in 
the prediction set, respectively. Based on the results, it was concluded that the acoustic resonance system combined 
with the supervised pattern recognition has a significant potential for the cracked eggs detection. 
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Although many operations in the egg produc-
tion have been automated, the crack detection 
of the eggshell still relies mainly on the manual 
candling (Jindal & Sritham 2003). Eggs may be 
contaminated through damage such as cracks, and 
persons may be exposed to a high health risk when 
eating damaged eggs (Lin et al. 1995). It mostly 
results in significant economic losses to the egg 
industry (Bain 1990).

The acoustic resonance technique is a promising 
method for the detection and analysis of agro-
products (Primo-Martín et al. 2009; Taniwaki 
et al. 2009; Elbatawi 2008). The characteristic 
sounds produced by agro-products may pro-

vide information on their quality. Therefore, 
agro-products with different external for internal 
qualities can be measured by analysis of their 
characteristic sounds. When cracks are present 
in an eggshell, its structure is disturbed and its 
vibration damp is enhanced. The characteris-
tic sound produced by impacting the shell of a 
cracked egg is different from that of the intact 
egg. Based on the principle, the eggs with intact 
or cracked shells can be discriminated. Coucke 
(1998) presented a non-destructive method for the 
determination of the eggshell strength based on 
acoustic resonance analysis. This technique can 
also be used for the eggshell cracks detection (Cho 
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et al. 2000; De Ketelaere et al. 2000). De Kete-
laere et al. (2003) evaluated several parameters 
for the eggshell measurement. Kemps et al. (2004) 
Calculated the elasticity modulus based on the reso-
nant frequency of a curved shell segment. Wang et 
al. (2004) established the relationship between the 
dominant frequency and the egg physical properties. 
Jindal et al. (2003) employed ANN model to detect 
cracked eggs. Furthermore, dominant frequency and 
the normalisation average of the frequency domain 
were investigated for classification (Wang & Jiang 
2005). The qualities of eggshells coming from differ-
ent strains of laying hens were compared based on 
the acoustic impulse analysis (Amer Eissa. 2009). 
The mechanical properties of the rupture force, 
specific deformation, rupture energy, and firmness 
were examined (Altuntas & Şekeroğlu 2008). 
These studies mainly focused on the acoustic system 
parameters optimisation and on the characteristic 
frequency investigation of the response signals. 
However, few reports have appeared on the com-
parison or selection of the calibration models for 
the cracked eggs discrimination. Generally, a robust 
discrimination model is a useful way to improve the 
identification rates of intact and cracked eggs.

The supervised pattern recognition refers to the 
techniques with the priori knowledge about the 
category membership of samples used for the clas-
sification (Berrueta et al. 2007; Twellmanna et 
al. 2008). The identification model is developed 
on a training set of samples within categories. The 
model performance is evaluated in the prediction set. 
The application of the supervised pattern recogni-

tion within chemistry, biology, pharmacology, and 
food science is becoming ever and more important 
(Barbri et al. 2007; Jin et al. 2007). In order to 
highlight a good performance in the discrimination 
between intact and cracked eggs, three supervised 
pattern recognition algorithms were attempted at 
to develop a robust discrimination model. These 
algorithms are K-Nearest Neighbours (KNN), Arti-
ficial Neural Network (ANN), and Support Vector 
Machine (SVM). Among them, KNN is a linear 
method, and both ANN and SVM are non-linear 
methods. In addition, recursive least squares (RLS) 
adaptive filter was used to enhance the signal-to-
noise ratio. Some excitation resonant frequency 
characteristics of eggs were used as input vectors 
of the supervised pattern recognition.

MATERIAL AND METHODS

Samples preparation. In this work, 130 eggs 
with intact shells and 130 eggs with shell cracks 
were collected from a farm within 2 days after 
laying. All egg sizes from peewee to jumbo were 
used and cracks were inflicted on some eggs for 
the experiment. Eggs with irregular cracus were 
not incorporated in the data analysis. The cracks 
which were measured with a micrometer were 
10–35mm long and less than 10-µm wide.

Experimental system. A system based on acous-
tic resonance was developed for the eggshell crack 
detection. The system consisted of a product sup-
port, a light exciting mechanism, a microphone, 

Figure1. Eggshell crack meas-
urement system based on 
acoustic resonance analysis
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signal amplifiers, a personal computer (PC), and 
the software to control the experimental setup 
and to analyse the results. A schematic diagram 
of the system is presented in Figure1.

The frequency response is greatly affected by the 
selection of the egg support. Based on previous 
experiments, a pair of rolls made of hard rubber 
was used to support the eggs. The shape of the 
support was focused normally onto the eggshell 
surface. During the measurements, the distortion 
of the egg natural motion caused by this sup-
port was minimal. The excitation set included an 
electromagnetic driver, adjustable voltage (d. c.), 
and a light stick. The excitation mechanism was a 
cylinder duralumin stick. Total mass of the stick 
was 6 g, with the length and diameter of 6cm 
and 0.2 cm, respectively. The force of excitation 
is an important factor affecting the magnitude 
and width of the pulse. In this work, adjustable 
voltage (d. c.) is used to control the current of 
the electromagnetic driver so as to control the 
force of excitation. Based on a previous test, the 
voltage of excitation was set at 30 V. In this case, 
a proper frequency content of the force pulse was 
maintained and thus the maximum signal was 
achieved without any instrumentation overload. 
The impacting point was close to the crack in the 
cracked eggshell, and was placed randomly in the 
intact eggshell. 

The response signal obtained from a microphone 
was amplified, filtred, and captured using a 16-bit 
data acquisition card. The microphone was placed 
on a shelf and isolated from the egg supporting 
structure so that no disturbing vibrations were in-
troduced when performing the measurements. 

Data acquisition and analysis. The software 
program was written in LabVIEW8.2 (National 
Instruments, Texas, USA) that allows a fast ac-
quisition and processing of the response signal. 
The sampling rate was 22.05 kHz. The time signal 
was transformed to a frequency signal using a 
512-point fast Fourier (FFT) transformation. The 
linear frequency spectrum obtained was trans-
formed into the power spectrum. A band-pass 
filter was used to preserve the information of the 
frequency band between 1000 and 8000 Hz. Due 
to the signal-to-noise  ratio, this favourable in the 
frequency band.

Software. All data processing algorithms were 
implemented with the statistical software Mat-
lab7.1 (Mathworks, Massachusetts, USA) under 
Windows XP. SVM Matlab codes were downloaded 

free of charge from http://www.esat.kuleuven.
ac.be/sista/lssvmlab/.

RESULT AND DISCUSSION

Response signals

Figure 2 shows typical acquisition signals of the 
intact and cracked eggs in the time domain. Due 
to the acoustic response an instantaneous impulse 
occurred thus it was difficult to discriminate be-
tween the response signals of cracked and intact 
eggs. The corresponding frequency domain signals 
transformed by FFT are shown in Figure 3. Here, 
the difference between them became remark-
able. As a result of the analysis, the dominant 
resonance frequency could be observed and the 
average frequency value was found to be higher 
with the cracked eggs. As to the intact eggs, the 
peak frequencies were prominent and generally 
found in the middle position (3500–5000Hz). In 
contrast, the peak frequencies of the cracked eggs 
were dispersed and not prominent.

Adaptive RLS filtering

Owing to the cracked eggshell detection being 
based on the acoustic response measurement, it 
is apt to interference by the surrounding noise. 
This fact is accentuated by the much damped be-
haviour of agro-products. Therefore, the response 
signal should be processed to remove the noise 
for further more analysis. 

Adaptive interference cancelling is a standard ap-
proach to remove the environmental noise (Adall 
& Ardalan 1999; Madsen 2000).The recursive 
least squares (RLS) is a popular algorithm in the 
field of the adaptive signal processing. In the adap-
tive RLS filtering, the coefficients are adjusted 
from sample-to-sample to minimise the mean 
square error (MSE) between the measured noisy 
scalar signal and its modelled value from the filter 
(Chase et al. 2005). The scalar, real output signal, 
yk, is measured at a discrete time k, in response 
to a set of scalar input signals, Xk(i), i = 1, 2, … n, 
where n is an arbitrary number of filter taps. In 
this research, n was set to the number of degrees of 
freedom to ensure the conformity of the resulting 
filter matrices. The input and output signals are 
related by a simple regression model:
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yk = ∑
i=0

w(i) × xk(i) + ek	 (1)

where: 
ek 	 – measurement error 
w(i) 	– proportion that is contained in the primary scalar 

signal yk 

The implementation of the RLS algorithm is op-
timised by exploiting the inversion matrix lemma 
and provides fast convergence and small error 
rates (Djigan 2006).

In this work, FIR filter based on RLS algorithm 
was used to process the acoustic response signal. 
The parameters of RLS were optimised as follows: 

the length of FIR filter was set to 32, the forgetting 
factor was set to 1, and the vector of the initial 
filter coefficients was set to 0. Figure 4 shows the 
frequency signals before and after the adaptive 
RLS filtering.

Variable selection

Based on the difference between the frequency 
domain response signals of intact and cracked 
eggs, five characteristics of the response frequency 
signals were exacted as input vectors of the dis-

Table 1. Frequency characteristics selection and expression 

Variables Resonance frequency characteristics Expression

X1 area of amplitude value X1 = ∑ 
i=0

Pi

X2 standard deviation of amplitude value X2 = √(Pi – P)2/n

X3 frequency band of max amplitude value X3 = Indexmax (Pi)

X4 mean of top three frequency amplitude values X4 = Max1:3 (Pi)/3

X5 ratio of amplitude values of middle frequency bands to low 
frequency banda X5 =( ∑i=1

Pi )/200
 

           
∑
i=2

Pi  

Figur 2. Typical response time 
signals of of eggs
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crimination models. The frequency characteristics 
of the response are given in Table 1.

Qualitative discrimination between intact  
and cracked eggs

In this work, 260 fresh eggs were investigated 
after having been divided into two subsets. One of 
the subsets was called the calibration set used to 
build the model, and the other one was called the 
prediction set used to test the robustness of the 
model. The calibration set contained 170 samples, 

while both the intact and cracked eggs comprised 
85 samples each. The remaining 90 samples con-
stituted the prediction set, consisting of 45 intact 
and 45 cracked eggs.

K-nearest neighbours

KNN(k-nearest neighbours) search is an impor-
tant and classic means in the computer science. 
It is a linear method. An unknown sample of the 
prediction set is classified according to the ma-
jority of its K-nearest neighbours in the training 

Figure 3. Typical response frequency 
signal of eggs

Figure 4. Frequency signals before and after 
adaptive RLS filtering
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set (Liu & Fu 2008; Gjertsen 2007). Parameter 
K has a great influence on the identification rate 
of KNN model, the optimal values for these pa-
rameters being selected in the calibration process. 
KNN-parameters are optimised with minimum 
prediction error estimated by cross-validation 
in the calibration set (Koukal et al. 2007; Chen 
2008).That value of K which gives the lowest error 
rate is selected. Therefore, in this work 10 K values 
(K=1, 2, ..., 10) were tested by cross-validation. 
The identification results of the cross validation as 
influenced by the K values are shown in Figure 5. 
As seen in Figure 5, the optimal KNN was achieved. 
When K was equal to 5, the identification rate by 
cross-validation was 86.1%. Here, the identifica-
tion rate was 88.9% in the prediction set.

Artificial neural network

Considering that KNN is a linear classification 
method that need not provide a complete solu-
tion of the classification problem, the non-lin-
ear approach such as artificial neural networks 
(ANN) was also used to compare with KNN. It 
is a powerful data-modelling tool that is able to 
capture and represent complex relationships be-

tween the inputs and outputs (Yetilmezsoy & 
Demirel 2008; O’Farrell et al. 2005).The back 
propagation artificial neural network (BP-ANN) 
is a classical feed-forward multi-layer network 
consisting of neurons arranged in layers (an input 
layer, one or more hidden layers, and an output 
layer) (Caglar et al. 2008; Jančić et al. 2008). The 
eigenvectors obtained from the response signals 
were processed by the neural network; the net-
work output expresses the resemblance between 
the object and thea training pattern. Along with 
every pass of the training pattern and adjustment 
of the weight factors, the difference between the 
desired and calculated network outputs, defined 
as the net-work output error, will gradually be-
come smaller until it meets the desired value. One 
cycle through all the training patterns is defined 
as an epoch. Before the optimal accordance of the 
network output errors is achieved for all training 
patterns, many epochs are required for the back 
propagation.

In this work, BP-ANN as one of the calibration 
methods for comparison was applied. Three layers 
(i.e., the input-hidden- and output layer) of BP-NN 
were arranged. Five characteristics of the response 
frequency signals were exacted as input vectors 
of ANN models. The number of neurons in the 

Figure 5. Identification rate of KNN model 
by cross-validation calibration set under 
different K values

Table 2. Comparison of the identification results coming from three models

Discrimination  models
Identification rates (%)

cross-validation calibration set independent prediction set

KNN 86.1 88.9

BP-NN 93.2 92.1

SVM 95.1 97.1
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hidden layer was set tor 5. The output of BP-NN 
was the free amino acid content of interest. Finally, 
optimum network architecture was obtained with 
the topological architecture 5–5–1. The learning 
rate factor and momentum factor were set to 0.1; 
the initial weights were 0.3; the scale function used 
was the ‘tan h’ function. The permitted error was 
set at 0.002 and the maximal training time was 
50 000 times. The identification rates of intact and 
cracked eggs were 95.9% and 90.9% in the cross-
validation calibration set, respectively. When the 
performance of BP-ANN model was evaluated by 
means of the samples, the identification rates of 
intact and cracked eggs were 90.9% and 93.2% in 
the prediction set, respectively. The performance 
of BP-ANN model was remarably better than that 
of KNN in both the cross-validation calibration 
set and the prediction set.

Support vector machines

Another non-linear approach, support vector 
machines (SVM), was also applied in this work. The 
support vector machine (SVM) is typically used 
to describe the classification problems with the 
support vector methods (Fernández et al. 2006). 

The basic concept of SVM is to map nonlinearly the 
original data x into a higher dimensional feature 
space and create a hyperplane between two sets 
of data for classification. The transformation into 
the higher-dimensional space is implemented by a 
kernel function (Thissen et al. 2004). In general, 
there are three classical kernel functions: Polyno-
mial kernel function, radial basis function (RBF) 
kernel function, and sigmoid kernel function. The 
selection of the kernel function has a great influ-
ence on the performance of SVM. Comparing with 
other feasible kernel functions, RBF could handle 
the linear and nonlinear relationships between the 
spectra and target attributes. Besides, RBF is able 
to reduce the computational complexity of the 
training procedure and give a good performance 
under general smoothness assumptions (Chen 
et al. 2007). Thus, RBF was recommended as the 
kernel function of SVM in this work. 

In order to obtain a good performance, the 
regularisation parameter C and parameter σ of 
the kernel function in SVM model have to be 
optimised. Parameter C determines the trade-off 
between the minimising of  the training error and 
the minimising of the model complexity. Param-
eter σ implicitly defines the non-linear mapping 
from the input space to some high-dimensional 

Figure 6. Contour plot of the optimisation parameters C and σ2 of the model using RBF kernel
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feature space. As shown in Figure 6, the search 
procedure was carried out in two steps. First, a 
comparatively large step length in a 10 × 10 grid 
represented as “·” was applied. Subsequently, a 
much smaller step length was used to obtain the 
optimal combination of these parameters; the 
search grid “×” is also shown in Figure 6. The op-
timal search area is determined based on the last 
step. The logarithmic form was employed in the 
search plane owing to the large magnitude in the 
investigated ranges of these parameters. Optimal 
C and σ2 for the calibration models were found as 
the values of 88.13 and 3.05, respectively.

When RBF kernel and optimised parameters of C 
and σ2 were used, the optimal SVM model could be 
obtained. It was achieved with the identification 
rates of intact and cracked eggs of 94.7% and 95.5% 
in the cross-validation calibration set, respectively. 
When the performance of SVM model was evalu-
ated by means of the samples, the identification 
rates of intact and cracked eggs were 96.2% and 
97.2% in the prediction set, respectively. Compared 
with KNN and ANN models, SVM model showed 
superior ability in the discrimination between 
intact and cracked eggs in both the calibration 
and prediction sets.

Discussion of discrimination results

In order to get a good performance in the dis-
crimination between intact and cracked eggs, KNN, 
ANN, and SVM models were examined compara-
tively. Table 2 shows the identification results com-
ing from the three models. SVM model and ANN 
model provided a remarkably better performance 
than KNN model, thus indicating that the nonlinear 
information was helpful to improve the prediction 
performance. These results can be explained by 
some relevant statistical learning theories. Gener-
ally, the non-linear method is apter than the linear 
method at the level of self-learning and self-adjust. 
Therefore, the non-linear model has often a higher 
performance in the calibration model.

The performance of SVM model was close to 
that of ANN model in the calibration set, but bet-
ter in the prediction set. As to the investigation 
between ANN and SVM models, the traditional 
ANN models are based on the empirical risk mi-
nimisation (ERM) principle (Fang et al. 2008). 
ERM minimises the error of the training data, 
suffering from the problem of producing models 

that can over-fit the data in generalisation. It 
means that the ‘best’ training model may always 
result in a poor performance in the prediction set. 
The foundation of SVM embodies the structural 
risk minimisation (SRM) principle, which covers 
the problem caused by ERM principle. The SRM 
principle theoretically minimises the expected 
risk based on the simultaneous minimisation 
of both the empirical risk and the confidence 
interval. SRM can maintain a trade-off between 
the accuracy of the training data and the capac-
ity of the learning machine so as to improve the 
generalisation of the model (Wu et al. 2008). This 
equips SVM with a greater potential to generalise 
the input–output relationship learnt during its 
training phase for making good predictions for 
new input data. The difference in RM leads to a 
better generalisation performance for SVM than 
ANN. Therefore, SVM embodies excellent gen-
eralisation in its theory, which results in better 
results than those obtained with ANN model in 
the prediction set.

CONCLUSIONS

The erggshell crack detection based on the 
acoustic impulse resonance was aimed at in this 
work. The signal-to-noise ratio of the acoustic 
impulse response was remarkably enhanced by 
adaptive filters. Three supervised pattern recogni-
tion methods (KNN, ANN, and SVM) were exam-
ined comparatively to develop a discrimination 
model in this work. All three methods provided 
acceptable results . Compared with KNN and 
ANN, SVM model showed superior ability in the 
discrimination between intact and cracked eggs in 
both the calibration and prediction sets. The re-
sults indicated that a robust discrimination model 
can be a useful way to improve the identification 
rates of cracked eggs. It can be concluded that the 
use of the acoustic resonance technique combined 
with an appropriate supervised pattern recogni-
tion is a promising method to detect cracked 
eggs.
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