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Fluorescence spectroscopy is a rapid, sensitive, 
and non-destructive analytical technique pro-
viding in a few seconds spectral signatures that 
can be used as fingerprints of the food products 
(dairy products, fishes, edible oils, wines, etc.). 
The application of fluorescence in food analysis 
has increased during the last decade, probably 
due to the propagated use of chemometrics. The 
study by Norgaard (1995) can serve as a general 
investigation of how to enhance the potential of 
fluorescence spectroscopy by chemometrics.

Since fluorescence spectra are typically com-
posed of broad overlapping fluorescence bands 
containing chemical, physical, and structural in-
formation of all sample components, the analytical 
information contained in spectra is multivariate 
in nature and, therefore, non-selective. In addi-
tion, differences between the samples may cause 
very slight spectral differences that are difficult to 

distinguish. The analytical information contained 
in fluorescence spectra can be extracted by using 
various multivariate analysis techniques that relate 
several analytical variables to the properties of 
the analyte(s). The multivariate techniques most 
frequently used allow to group the samples with 
similar characteristics, to establish classification 
methods for unknown samples (qualitative analysis) 
or to perform methods determining some proper-
ties of unknown samples (quantitative analysis).

In the following sections, mathematical data 
pretreatments most frequently used and their spe-
cific purpose, reduction of variables with principal 
component analysis, multivariate classification 
techniques for qualitative analysis, and multivari-
ate calibration methods for quantitative analysis 
are discussed. The applications are then listed 
according to the food samples: dairy products, 
eggs, fishes, edible oils, and miscellaneous.
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chemometrics

Pretreatment of spectra

In conventional fluorescence spectroscopy, two 
basic types of spectra are usually measured. When 
a sample is excited at a fixed wavelength λex, an 
emission spectrum is produced by recording the 
emission intensity as a function of the emission 
wavelength λem. An excitation spectrum may be 
obtained when λex is scanned while the observa-
tion is conducted at a fixed λem. In food analysis, 
the emission spectra at a particular λex are typi-
cally studied. When a set of emission spectra at 
different λex is recorded, a three-dimensional 
landscape is obtained, the so-called fluorescence 
excitation-emission matrix (EEM). Recording EEMs 
(total excitation-emission matrix luminescence 
spectroscopy) enables to obtain more informa-
tion about the fluorescent species present in the 
sample, because the bands arising in the wider axes 
are considered. The broad nature of conventional 
fluorescence spectrum and spectral overlap can be 
overcome and enhanced selectivity can be obtained 
using synchronous fluorescence scan (SFS). In 
SFS, the λex and λem are scanned simultaneously 
(synchronously), usually maintaining a constant 
wavelength interval, ∆λ, between λex and λem. 
Besides the spectral overlap, the inner-filter ef-

fect, scattered light, and reflected light can also 
limit the applicability of conventional right-angle 
fluorescence spectroscopy (Figure 1) under cer-
tain conditions, e.g. high concentrations of the 
fluorescent species. To avoid these problems, the 
method of front-face fluorescence spectroscopy 
(Figure 1) can be used for bulk liquid samples and 
solid samples (Parker 1968; Hirschfeld 1978; 
Eisinger & Flores 1979; Blumberg et al. 1980; 
Hirsch & Nagel 1989; Genot et al. 1992a, b; 
Sóti et al. 1993; Herbert et al. 2000; Patra & 
Mishra 2002). The incidence angle of the excita-
tion radiation is usually set at 56° (Table 1).

Often, several spectra of the same sample are 
recorded to verify reproducibility, and the average 
of those spectra is computed and used afterward. 
No special smoothing algorithms are needed when 
the multivariate data approach is used (Norgaard 

Table 1. Fluorescence and multivariate analysis techniques in food classification

Food sample Fluorescence technique Multivariate analysis technique References

Semi-hard cheese front-face (56°) PCA, FDA Karoui & Dufour (2006)

front-face (56°) CCSWA Karoui et al. (2006a)

Soft cheese front-face (52°) PCA, CCSWA Karoui et al. (2007a)

front-face (56°) PCA, FDA, CCA Karoui et al. (2003)

Eggs front-face (22.5°) PCA, FDA Karoui et al. (2006d)

Fish front-face (56°) PCA, FDA Karoui et al. (2006e)

Meat front-face (180°), EEM PCA, PLS, PARAFAC Møller et al. (2003)

Olive oils right-angle, EEM PCA, PARAFAC Guimet et al. (2004)

right-angle, EEM PCA, PARAFAC, LDA, PLSR Guimet et al. (2005)

right-angle, EEM NMF, PARAFAC, LDA, PLSR Guimet et al. (2006)

right-angle, EEM, SFS PCA, HCA Poulli et al. (2005)

Vegetable oils right-angle, EEM, SFS kNN, LDA Sikorska et al. (2005)

Honey front-face (56°) PCA, FDA Karoui et al. (2007b)

Wines front-face (56°) PCA, FDA Dufour et al. (2006)

Beers right-angle, EEM PCA, kNN, LDA Sikorska et al. (2006)

Figure 1. Right-angle and front-face fluorescence spectros-
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1995). Obviously raw spectra are used as acquired 
in right-angle geometry without any pretreatment. 
Front-face fluorescence spectra are normalised by 
reducing the area under each spectrum to the value 
of 1 in order to reduce scattering effects and to 
delete the differences between the spectra due to 
different amounts of sample (Bertrand & Scot-
ter 1992). This mathematical procedure consists 
of dividing each row by the sum of the correspond-
ing columns. In this case, mainly the shift of the 
peak maximum and the peak width changes in the 
spectra are considered. First or second derivative 
algorithm is sometimes tested to enhance differ-
ences between spectra and to resolve the overlap-
ping bands (Sikorska et al. 2006). 

Reduction of variables by principal 
component analysis

There is a need for variable-reduction methods 
because of the vast amount of spectral information 
provided by fluorescence spectrophotometers, 
the substantial number of samples required to 
construct classification and calibration models, 
and the high number of correlated variables in the 
spectral data. The best known and most widely 
used variable-reduction method is the principal 
component analysis (PCA). PCA is a mathematical 
procedure which decomposes the data matrix with 
n rows (samples) and p columns (variables, e.g. 
wavelengths) into the product of a scores matrix, 
with n rows (samples) and d < p columns (prin-
cipal components, PCs), and a loadings matrix, 
with d < p rows (principal components, PCs) and 
p columns (variables). The scores are the posi-
tions of the samples in the space of the principal 
components and the loadings are the contribu-
tions of the original variables to the PCs. All PCs 
are mutually orthogonal, and each successive PC 
contains less of the total variability of the initial 
data set. Usually only a limited number d < p of 
PCs are retained as the variability in the others is 
due to noise. This reduces the dimensionality of 
the data considerably, enabling effective visualisa-
tion, classification, and regression of multivariate 
data (Geladi 2003).

Multivariate classification for qualitative 
analysis

In qualitative analysis, the sample properties 
that have to be related to spectral variations have 

discrete values that represent the product identity 
or the product quality, e.g. “original” or “blend”, 
“fresh” or “non-fresh”. To solve the selectivity and 
interference problems of fluorescence spectra, 
multivariate classification methods are used for 
grouping the samples with similar discrete values 
(characteristics).

Multivariate classification methods, also known 
as pattern-recognition methods, are subdivided 
in “supervised” and “non-supervised” learning 
algorithms, depending on whether or not the class 
to which the samples belong is known (Geladi 
2003).

“Non-supervised” methods

“Non-supervised” methods, also known as ex-
ploratory methods, do not require any a priori 
knowledge about the group structure in the data, 
but instead produce the grouping, i.e. clustering, 
them selves. This type of analysis is often very 
useful at an early stage of the investigation to ex-
plore subpopulations in a data set, e.g. different 
freshness of a product. Cluster analysis can be 
performed with simple visual techniques, such as 
hierarchical cluster analysis (HCA) or PCA. HCA 
involves the assessment of similarity between 
the samples based on their measured properties 
(variables). The samples are grouped in clusters 
in terms of their nearness in the multidimensional 
space. The results are presented in the form of 
dendograms to facilitate the visualisation of the 
sample relationships (Poulli et al. 2005). PCA 
is usually the first step in fluorescence data ex-
ploration (Table 1). The main goal of PCA is to 
find relationships between different parameters 
(samples and variables) and/or the detection of 
possible clusters within the samples and/or vari-
ables. PCA performed on fluorescence spectra 
makes it possible to draw the similarity maps of 
the samples and to get the spectral patterns. The 
spectral patterns corresponding to the principal 
components provide information about the char-
acteristic peaks which are the most discriminat-
ing for the samples observed on the maps. While 
the similarity maps allow the comparison of the 
spectra in such a way that two neighbouring points 
represent two similar spectra, the spectral pat-
terns exhibit the fluorescence bands that explain 
the similarities observed on the maps. 

In most of the fluorescence studies, bilinear 
model as two-way PCA has been used, i.e., PCA is 
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applied separately to each excitation or emission 
wavelength, where it gives one score matrix and 
one leading matrix for each excitation or emission 
wavelength. A trilinear model PARAFAC (parallel 
factor analysis) ideally decomposes the fluores-
cence landscapes (excitation emission matrices) 
presented in a three-way array into trilinear com-
ponents according to the number of fluorophores 
present in the samples (Bro 1997). PARAFAC gives 
one score matrix and two leading matrixes. The 
retrieved scores and loadings can then be directly 
related to the relative concentrations (scores) and 
the fluorescence characteristics of the present 
fluorophores. Thus, the excitation and emission 
loadings can be used in interpretation and identi-
fication of the fluorescence phenomena found. It 
means that, where PCA gives the abstract latent 
variables, PARAFAC produces the true understand-
ing phenomena (Munck et al. 1998).

In some cases, non-negative matrix factorisation 
(NMF) may be more suitable than PCA. With NMF, 
only positive solutions (values) can be obtained and 
thus this method provides a more realistic approxi-
mation to the original data than PCA that allows 
positive and negative values (Guimet et al. 2006).

The complexity of the food products can lead to 
collecting several (chemical, microbiological, etc.) 
data tables on the same samples. For exploring all 
these data sets, it is common to perform a multi-
dimensional analysis (PCA, PARAFAC) on each 
data table and thereafter sum up the conclusions 
thus obtained. Other authors propose to run a 
multidimensional analysis on a data table obtained 
by merging all of them in one matrix. These two 
approaches obviously can not allow studying the 
relationships among the collected data tables.

The relations between the information collected 
by the various methods have been described by 
two methods, common components and specific 
weights analysis (CCSWA) and canonical correla-
tion analysis (CCA). The goal of CCA is to find 
the maximal correlation between the chosen linear 
combination of the first set of variables and the 
chosen linear combination of the second set of 
variables. Maximally correlated pairs of variables 
may then be identified with linear combinations 
and are called the canonical variables. CCSWA 
consists of determining the common space of 
representation for all the data sets. Each table has 
a specific weight associated with each dimension 
for this common space. This information is not 
given by CCA (Mazerolles et al. 2002).

“Supervised” methods

In the “supervised” methods (also known as 
discriminant analysis), each spectrum is formerly 
assigned to a definite class, so a qualitative data 
is added to the quantitative spectral data. For this 
purpose, comprehensive libraries of spectra that 
represent the natural variation of each product 
have to be constructed in a calibration process. 
Most of the classification methods can operate 
either in the wavelength space or in a dimen-
sion-reduced factor space. Principal component 
or partial least squares (PLS) analyses are often 
applied to spectral datasets prior to discriminant 
analysis as tools for dataset size and co-linear-
ity reduction. Spectral data are then treated to 
highlight the relation between these data and the 
class considered. Various methods can be used, 
like linear discriminant analysis (LDA) (Sikor-
ska et al. 2005), factorial discriminate analysis 
(FDA) (Karoui & Dufour 2003), or K-nearest 
neighbours (kNN) (Sikorska et al. 2005). In any 
case, the purpose is to form weighted linear com-
binations of the data to minimise within class 
variance and to maximise between class variance. 
The distance between classes characterises the 
partition obtained. The validity of the method can 
be verified by comparison of the distances. The 
distances between classes means have to be clearly 
superior to the distances within classes. Another 
way to validate the discrimination is to test it. If 
the samples studied are numerous enough, they 
can be separated into two sets: a training set to 
elaborate the method (calibration), and a test set 
to validate it. The classification rules are later 
used for allocating new or unknown samples to 
the most probable subclass.

In fluorescence spectrometry, factorial discrimi-
nate analysis (FDA) is usually the second step in 
mathematical analysis of the data (Table 1). The 
method cannot be applied in a straightforward 
way to continuous spectra because of the high 
correlations occurring between the wavelengths. 
Advantages were found in the preliminary transfor-
mation of the data into their PCs. Thus, in the first 
step, step-wise discriminant analysis is performed 
to select the most relevant PCs for the discrimina-
tion of variables following the qualitative classes 
initially defined. From the selected variables, FDA 
assesses new synthetic variables called “discrimi-
nant factors”, which are linear combinations of 
the selected PCs, and allows a better separation 
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of the centres of gravity of the classes considered. 
The individuals can be reallocated within various 
classes. For each individual, the distance from the 
various centres of gravity of a class is calculated. 
The individual is assigned to the class where the 
distance between the centres of gravity is the short-
est. The comparison of the assigned class and the 
real class is an indicator of the quality of discrimi-
nation. Similarity maps and patterns can be drawn, 
in analogy to those for PCA.

Multivariate calibration for quantitative 
analysis

The multivariate regression methods most fre-
quently used in quantitative fluorescence analysis 
are partial least-squares regression (PLSR) and 
principal component regression (PCR). Both can 
be used in specific spectral regions or the whole 
spectrum, and they allow more information to 
be included in the calibration model. PCR uses 
the principal components provided by PCA to 
perform regression on the sample property to be 
predicted. PLSR finds the directions of greatest 
variability by comparing both spectral and target 
property information with the new axes, called 
PLSR components or PLSR factors. Thus, the 
main difference between the two methods is that 
the first principal component or factor in PCR 
represents the widest variations in the spectrum, 
whereas in PLSR it represents the most relevant 
variations showing the best correlation with the 
target property values. In both cases, the optimum 
number of factors used to build the calibration 
model depends on the sample properties and the 
analytical target (Geladi 2003).

APPLICATIONS

Dairy products

Aromatic amino acids, nucleic acids, tryptophan 
residues of proteins, riboflavin, and vitamin A are 
the best known fluorescent molecules in dairy 
products.

Fluorescence spectrum recorded on a cheese 
sample following excitation at 290 nm and 380 nm 
and emission between 400–600 nm included in-
formation on several fluorophores and may be 
considered as a characteristic fingerprint which 
allows the sample to be identified (Karoui & Du-
four 2003). Tryptophan residues in proteins are 

excited at 290 nm with maximum emission at about 
345 nm. The emission of tryptophan is highly sensi-
tive to its local environment and is thus often used 
as a reference group for protein structure changes, 
binding of ligands, and protein-protein associations. 
The emission fluorescence region (305–450 nm) 
allows the study of the fluorescent Maillard-re-
action products (maximum emission at 440 nm) 
(Karoui et al. 2007a). Riboflavin has a strong and 
broad fluorescence emission peak in the region of 
525–531 nm (excitation wavelength 380 nm). In 
ultraviolet light, riboflavin is degraded into two 
fluorescent products: lumichrome and lumiflavin 
with emission maxima between 444–479 nm and 
516–522 nm, respectively. The reduction of the 
fluorescence at about 525 nm might reflect the 
photo-degradation of riboflavin (Andersen et al. 
2006; Karoui et al. 2007b). The excitation spectra 
of vitamin A recorded between 250 and 350 nm 
with the emission wavelength set at 410 nm pro-
vide information on the development of protein 
fat globule interactions during milk coagulation. 
The shape of the vitamin A excitation spectrum was 
correlated with the physical state of the triglycerides 
in the fat globule (Karoui et al. 2007a).

Since the cheeses differ in their manufacturing 
processes, geographic locations, animal feeds and 
breeds, as well as the conditions of milk production, 
it is apparent that their structures at the molecular 
level and, as a consequence, the environments of 
the intrinsic cheese fluorophores are different.

During ripening, the main components of cheese 
are subject to physical and chemical changes, which 
determine the fluorescence properties of the final 
product. Young cheese (2 days old) had the highest 
fluorescence intensity around 520 nm, whereas 
60-day old cheese had the highest intensity in the 
420–480 nm spectral region and the lowest one 
at 520 nm (Karoui et al. 2007b). As a result of 
lumiflavin formation, a blue shift around 520 nm 
is observed for cheeses of 30 and 60 days ripen-
ing (Wold et al. 2002). Lipid oxidation of cheese 
throughout ripening can also contribute to the 
change observed in the spectra after excitation set 
at 380 nm. The shift of the tryptophan maximum 
emission to larger wavelength range of the ripened 
cheese (60 days ripening) can be explained by 
the exposing of more tryptophan residues to the 
aqueous phase. The excitation spectra of vitamin 
A showed the greatest difference during cheese 
ripening. This high sensitivity was attributed to 
the change in the environment, solvent viscosity, 
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and the physical state of triglycerides in the fat 
globules (Karoui et al. 2006a).

Due to the complexity of cheese ripening, several 
data tables can be recorded on the same sample. 
All the data sets are then analysed by chemometric 
methods like PCA, FDA or CCSWA. 

The emission fluorescence spectra (400–640 nm) 
following excitation at 380 nm recorded at the 
surface layers of semi-hard cheese, produced dur-
ing summer and autumn periods, can be used as a 
useful probe for monitoring the oxidation of cheese 
throughout ripening (2, 30, and 60 days). PCA 
and FDA were applied to extract the information 
contained in the fluorescence spectra. Correct 
classification of 93.7% and 90.3% of the calibration 
and cross-validation data sets, respectively, was 
observed for the cheese samples cut at the surface 
layers and produced during summer and winter 
periods. In the inner layers of cheese, only 67.4% 
and 62.5% correct classification was observed 
for the calibration and cross-validation spectra, 
respectively (Karoui et al. 2007b). 

Recently, spectroscopic techniques coupled with 
CCSWA were used as an accurate tool to moni-
tor the molecular changes that occur in cheese 
throughout ripening (Mazerolles et al. 2002, 
2006; Kulmyrzaev et al. 2005). The CCSWA 
showed its ability to describe the overall infor-
mation collected from fluorescence and physi-
co-chemical data tables and to extract relevant 
information at the molecular level throughout rip-
ening of semi-hard cheese. Tryptophan, riboflavin, 
and vitamin A fluorescence spectra were scanned 
on 12 cheeses on 2, 30, and 60 days of ripening. 
From the CCSWA performed on four data sets, it 
appeared that the relationships between all these 
tables led to the formation of two common com-
ponents which allowed a global characterisation 
of the various brand cheese products throughout 
ripening (Karoui et al. 2006a).

Fluorescence spectroscopy can provide useful 
fingerprints, allowing the identification of cheese 
according to their manufacturing processes and 
sampling zones. The discrimination between the 
sampling zones and manufacturing processes were 
better with the vitamin A than with the tryptophan 
or riboflavin fluorescence spectra. Tryptophan, 
riboflavin, and vitamin A fluorescence spectra 
were recorded in two sampling zones (external and 
central) of 15 retail soft cheeses, for which the man-
ufacturing processes were different. The 15 chees-
es were discriminated using PCA or CCSWA. 

Using the PCA performed separately on each of 
the probe data sets, the best result was obtained 
from the vitamin A fluorescence spectra. CCSWA 
was then applied to the tryptophan, riboflavin, 
and vitamin A fluorescence spectra. The results 
showed that the CCSWA methodology allowed the 
use of all the spectroscopic information given by 
the three intrinsic probes in a very efficient way. 
The spectral patterns allowed information on the 
protein structure, protein-protein and protein-fat 
globule interactions, and the degree of riboflavin 
degradation to be derived at the molecular level 
(Karoui et al. 2007a).

The quality parameters of cheese such as rheo-
logical properties may be derived from the fluores-
cence data (Kulmyrzaev et al. 2005). Changes at 
the molecular and macroscopic levels of ripened 
soft-cheese samples, for which the manufacturing 
process was varied, were studied from the surface 
to the centre of the cheese using dynamic low 
amplitude strain rheology and front-face fluores-
cence spectroscopy. Protein tryptophan emission 
spectra and vitamin A excitation spectra were 
recorded in samples cut from the surface to the 
centre. The values of storage modulus (G'), loss 
modulus (G''), tan (δ), and strain were determined 
for all the samples. For each cheese, the data sets 
containing fluorescence spectra and rheology 
values were analysed by PCA, FDA, and CCA. The 
discriminant ability of the data was investigated 
by applying FDA to the first 10 PCs of the PCA 
performed on the vitamin A and tryptophan fluo-
rescence spectra. From the tryptophan fluorescence 
data sets, 94% and 87.7% correct classifications 
were observed for the calibration and validation 
groups, respectively. A better classification (100% 
and 96% for the calibration and the validation 
groups) was obtained from the vitamin A spectra. 
Correlations between the rheological data (G') and 
the fluorescence spectra (tryptophan, vitamin A) 
were considered to improve the understanding of 
the relationship between the shape of fluorescence 
spectra and rheology characteristics of cheese. CCA 
was performed on tryptophan spectra/rheology 
data and on vitamin A spectra/rheology data. It 
appeared that tryptophan fluorescence spectra and 
vitamin A spectra were highly correlated with the 
rheological properties. These correlations indicated 
that the phenomena observed at the molecular 
(fluorescence) and the macroscopic (rheology) 
levels are related to the texture of cheese since 
fluorescence spectroscopy and dynamic testing 
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rheology allowed the discrimination of the cheese 
samples as a function of their location in the cheese 
(Karoui & Dufour 2003). 

Using partial least square, tryptophan fluores-
cence spectra recorded at 20°C on 2-day-old cheese 
predicted storage modulus (G'), loss modulus 
(G''), strain, tan (δ), and complex viscosity (η*) 
measured at 80°C on 60-day-old cheeses with cor-
relation coefficients of 0.98, 0.97, 0.98, 0.98, and 
0.97, respectively. Riboflavin fluorescence spectra 
gave slightly lower correlation coefficients of 0.88, 
0.88, 0.92, 0.87, and 0.88, respectively (Karoui & 
Dufour 2006). 

Near/mid-infrared and fluorescence spectros-
copy combined with chemometric methods has 
a potential for determining the geographic origin 
of different cheeses. CCSWA was performed on 
the physico-chemical, infrared, and tryptophan 
fluorescence data sets of Emmental cheese of 
different European geographic origins produced 
during winter. The results showed that spectro-
scopic techniques may provide useful fingerprints 
and allow the identification of Emmental cheese 
according to the geographic origin and the pro-
duction conditions. In addition, tryptophan fluo-
rescence spectra allowed a good discrimination of 
Emmental cheeses made from raw milk or from 
thermised milk (Karoui et al. 2005a).

Tryptophan fluorescence data and infrared spec-
tral data are fingerprints that allow an accurate 
identification of Emmental cheese according to 
their manufacturing periods (summer and win-
ter). Cheeses produced during winter and summer 
were pooled into one matrix and PCA was ap-
plied separately to three infrared spectral regions 
and to the tryptophan fluorescence spectra. The 
two-dimensional score plots for the tryptophan 
fluorescence spectra showed a good discrimina-
tion between the cheese manufactured in winter 
or in summer. Similar results were observed with 
three mid-infrared spectral regions. In order to 
assess the potential of infrared and fluorescence 
spectroscopy to determine the geographic origin 
of cheese independently of the seasonal period of 
manufacture, FDA was performed on the first twenty 
PCs of the PCA performed on the four data tables 
corresponding to three infrared spectral regions and 
tryptophan fluorescence spectra. Before applying 
FDA, five groups were created for the cheese (Aus-
tria, Finland, Switzerland, France and Germany), 
independently of the manufacturing period. When 
FDA was applied to either the infrared or fluores-

cence spectral data, the geographical classification 
was not satisfactory. Therefore, the first twenty PCs 
of the PCA extracted from each data set (infrared 
and tryptophan fluorescence spectra) were pooled 
into a single matrix and analysed by FDA. Correct 
classification of 89% and 76.7% of the calibration 
and cross-validation data sets, respectively, was 
observed (Karoui et al. 2004). 

The results of FDA performed on the mid-infra-
red spectra, fluorescence emission spectra, follow-
ing excitation at 250 and 290 nm, and fluorescence 
excitation spectra following emission at 410 nm 
showed a good discrimination of the cheeses from 
three different regions in Jura (France). The dis-
crimination between cheeses manufactured at 
different altitudes in Switzerland was better with 
the fluorescence spectra than with the mid-infrared 
spectra (Karoui et al. 2005b).

Fluorescence spectroscopy in combination with 
chemometrics is a fast method for monitoring the 
oxidative stability and quality of yogurt (Miquel 
Becker et al. 2003). PARAFAC analysis of the 
fluorescence landscapes with excitation wave-
lengths from 270 nm to 550 nm and emission 
wavelengths in the range of 310–590 nm exhibited 
three fluorophores (tryptophan, riboflavin, and 
lumichrom) present in yogurt, all strongly related 
to the storage conditions. Regression models based 
on PARAFAC scores, PLS, and multiway PLS be-
tween fluorescence landscopes and the riboflavin 
content were compared and yielded only minor 
differences with respect to the prediction error 
(Christensen et al. 2005). 

Eggs

The fluorescence spectroscopy is a promising 
approach to determining the egg freshness. The 
emission spectra of different eggs showed two 
maxima located at 635 and 672 nm after excita-
tion at 405, 510, 540 and 557 nm, related to the 
pigments of porphyrin nature and porphyrin de-
rivatives of florin and oxoflorin. The intensity at 
672 nm of a fresh egg is stronger than that of an 
old one (Karoui et al. 2006b).

The fluorescence of thick and thin egg albumens 
was evaluated as a possible rapid method for the 
monitoring of egg freshness. The fluorescence 
emission spectra of tryptophan residues of proteins 
and fluorescent Maillard reaction products were 
recorded directly on thick and thin albumen sam-
ples within 2–29 days of storage. PCA performed on 
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tryptophan spectra showed mainly discrimination 
between 1, 2, 3, and 4 weeks of storage. The ability 
of tryptophan fluorescence spectra to differentiate 
between thick or thin albumen samples according 
to their storage time was investigated by applying 
FDA to the first 5 PCs of the PCA performed on 
tryptophan fluorescence spectra. Before applying 
FDA, four groups were created for the investi-
gated eggs (stored for 1, 2, 3, and 4 weeks). Correct 
classification amounting to 62.8% and 54.3% was 
observed for the calibration and the validation of 
thick albumen samples, respectively. The percentage 
of thin albumen samples correctly classified by the 
FDA was 67.2% and 69.1% for the calibration and 
validation spectra, respectively. Considering fluo-
rescent Maillard reaction products, the percentage 
of samples correctly classified into four groups by 
the FDA was 97.4% and 91.4% for the calibration 
and validation thick albumen samples, respectively. 
It was concluded that fluorescent Maillard reaction 
products could be considered as fingerprints that 
may allow the discrimination between fresh and 
aged eggs (Karoui et al. 2006c).

Recently, Karoui et al. (2006d) confirmed the 
high potential of vitamin A fluorescence spectra as 
a useful tool for monitoring egg freshness. Tryp-
tophan and vitamin A fluorescence spectra were 
investigated in search for potential markers of egg 
yolk freshness during storage. Comparison of the 
results obtained from the FDA indicated that better 
calibration as well as validation results were obtained 
from the vitamin A excitation fluorescence spectra 
than from the tryptophan emission fluorescence 
spectra. Using the vitamin A fluorescence spectra, 
correct classification was observed for 94.9% and 
91.4% for the calibration and the validation sets, 
respectively. The first five PCs of the PCA extracted 
from each data set (tryptophan and vitamin A fluo-
rescence spectra) were pooled into a single-matrix 
and analysed by FDA. Correct classification was 
obtained for 97.5% of the calibration and 96.3% 
of the validation spectra.

Meat

Autofluorescence for the analysis of meat was first 
proposed in 1986 as a method for quality control 
of meat and fish products based on their intrinsic 
fluorescence characteristics ( Jensen et al. 1986). 
The method was based on excitation at 340 nm and 
the fact that bone, cartilage, connective tissues, 
and meat possess different fluorescent properties. 

Only weak fluorescence signals are obtained with 
pure meat at this excitation wavelength, whereas 
the undesired substances (fat, bone, cartilage, and 
connective tissue) all give a considerable fluores-
cence emission signal. The emission spectra of 
these compounds are different in shape but they 
all have a peak with a maximum at 390 nm and 
a shoulder peak with emission at 455 nm (bone, 
cartilage, and connective tissue) or 475 nm (fat), 
which can probably be assigned to different types 
of collagen and NADH.

The studies on meat autofluorescence were pri-
marily focused on the measurements of collagen 
in connective and adipose tissues, but protein 
fluorescence and suggestions for some fluorescent 
oxidation compounds were also reported (Swat-
land 1987, 1994, 2000, 2001). Most of these studies 
were carried out with a univariate data analytical 
approach; univariate regression models were cal-
culated between the desired quality parameters 
and single wavelengths or extracted fluorescence 
peak features.

Egelandsdal et al. (2002) later applied the bi-
linear methods PCA and PLS in the evaluation of 
autofluorescence emission spectra of meat obtained 
from selected excitation wavelengths in the UV re-
gion between 300–400 nm. Fluorescence emission 
spectra assigned to fluorescent oxidation products 
were found to correlate with lipid oxidation and ran-
cidity of meat. Moreover, tryptophan fluorescence 
(excitation 290 nm) was correlated with the texture 
of meat emulsions and sausages and meat tender-
ness. Also autofluorescence images reflecting the 
collagen fluorescence were used for quantification of 
the intramuscular fat content and connective tissue 
in beef as well as for mapping the lipid oxidation 
in chicken meat. All the described multivariate 
fluorescence studies of meat used bilinear models 
to evaluate single-emission spectra.

The only multiway study of autofluorescence of 
meat reported so far was on dry-cured Parma ham 
which was monitored throughout processing and 
aging (Møller et al. 2003). A PARAFAC decom-
position of the recorded fluorescence landscapes 
revealed the presence of five fluorophores, of which 
tryptophan was assigned to be the dominating 
one. The remaining four components were more 
difficult to assign, one was suggested to arise from 
salting, and the others were related to the oxida-
tion products.

To understand better the formation of the flu-
orescent compounds in meat undergoing lipid 
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oxidation, some different model systems were 
studied by fluorescence spectroscopy (Veberg et 
al. 2006). In each system, the formation of fluo-
rescence resulting from reactions between protein 
and carbonyl compounds at 4°C in biological sys-
tems was investigated. Aldehydes were added to 
minced turkey, pork, and cod meat. When excited 
at 382 nm, different combinations of aldehydes 
resulted in broad and slightly differently shaped 
fluorescence spectra and the overall intensity 
increased logarithmically for 14 days. The fluo-
rescence intensity increased in accordance with 
the degree of aldehyde saturation, and aldehydes 
with double bond in 2,4 position gave generally 
a higher intensity than the aldehyde with double 
bond in 2,6 position. Diferences in the spectral 
shape originating from different aldehydes sug-
gest that fluorescence may be able to detect and 
quantify oxidation related to different groups of 
aldehydes. For turkey, the intensities were in the 
following order: 2,4-heptadienal > 2,4-nonadienal > 
MDA > 2-hexenal > 2,6-nonadienal. Pork revealed 
almost the same order except for 2,4-nonadienal 
and MDA, which switched places. The intensity 
order for cod was the same as for turkey.

The fluorescence responses of wholesome and 
unwholesome chicken carcasses were character-
ised and further evaluated for the detection and 
classification of wholesome and unwholesome 
chicken carcasses (Moon et al. 2006). Fluorescence 
characteristics from epidermal layers in the breast 
areas from chicken carcasses were dynamic from 
nature. Emission peaks and ridges (maxima) were 
observed at 386, 444, 472, 512, and 554 nm and 
valleys (minima) were observed at 410, 460, 484, 
and 538 nm. One of major factors affecting the 
line shapes of the fluorescence responses from 
chicken carcass skin layers was absorption by 
hemoglobin. With the use of the normalised ratio 
spectra (NRS) approach, oxyhemoglobin was shown 
to be a major constituent in chicken carcasses 
affecting the fluorescence emission line shapes. 
With the use of simple fluorescence band ratios as 
a multivariate model, wholesome and unwholesome 
chicken carcasses were correctly classified with 
97.1% and 94.8% accuracies, respectively.

Fish

During freezing, storage and thawing, fish mus-
cle may undergo protein denaturation and lipid 
oxidation. Fluorescence spectrometry was used to 

measure lipid oxidation products during frozen 
fish storage (Aubourg & Medina 1999; Duflos 
et al. 2002).

Important fluorophores of fish muscle include 
aromatic amino acids and nucleic acids (excita-
tion 250 nm, emission 280–480 nm), tryptophan 
residues (excitation 290 nm, emission 305–400 nm) 
of proteins, and NADH (excitation 336 nm, emis-
sion 360–600 nm). The aromatic amino acids 
and nucleic acids fluorescence emission spectra 
recorded on cod, mackerel, salmon, and whiting 
fillets on 1, 5, 8, and 13 days of storage, as well as 
its tryptophan and NADH fluorescence spectra, 
are fingerprints that allow the evaluation of fish 
freshness (Dufour et al. 2003).

NADH fluorescence spectra may be considered 
as a promising probe for the reliable differentiation 
between frozen-thawed and fresh fish. The NADH 
emission spectra (excitation 340 nm) of fresh fish 
showed a maximum at 455 nm and a shoulder at 
403 nm, while frozen-thawed fish was character-
ised by a maximum at 379 nm and a shoulder at 
455 nm. It appeared that the shape of NADH emis-
sion spectra correlated with the treatment applied 
to the fish. Considering tryptophan fluorescence 
spectra, the normalised emission spectra of fresh 
fish samples exhibited a maximum at about 326 nm 
while frozen-thawed samples had a maximum at 
330 nm. As most of the spectra represent very 
similar shapes (especially for tryptophan fluo-
rescence spectra), PCA and FDA were used to 
extract information from spectral data bases. In 
the first step, PCA was applied separately to the 
tryptophan or NADH fluorescence spectra. From 
the NADH spectra, PCA results showed a good 
discrimination between fresh and frozen-thawed 
fish samples. In the second step, FDA was ap-
plied to the first five PCs of the PCA performed 
on the two data sets. A better classification was 
obtained from NADH fluorescence spectra since 
100% correct classifications were obtained for 
the calibration and validation spectra (Karoui 
et al. 2006e). 

Edible oils

The fluorescence emission spectra of olive oils 
are related to its composition and stability. Virgin 
olive oils are quite stable against oxidation because 
of the antioxidant activity of phenolic compounds 
and vitamin E. In addition, chlorophylls protect 
oils in the darkness. Therefore, the fluorescent 
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spectra of virgin olive oils at the excitation wave-
length of 365 nm shown a peak around 681 nm, 
due to chlorophylls, and three other peaks (two 
of low intensity at 445 nm and 475 nm, and one 
more intense at 525 nm), which can be attributed 
to vitamin E. Refining processes decrease the vi-
tamin E and chlorophylls contents, so refined oils 
(pure, olive-pomace oil) are more liable to undergo 
oxidation processes. These changes are reflected 
in their emission fluorescence spectra, in which 
these oxidation products give a wide peak between 
400 nm and 500 nm (excitation at 365 nm). The 
chlorophylls peak is much more intense than the 
peaks of the rest of the species in oils (Kyriakidis 
& Skarkalis 2000).

Both PCA and PARAFAC applied to EEMs of 
the two main groups of olive oils (virgin and pure) 
show clear differences between these types of oils. 
Chlorophylls had a strong influence on the models 
because of their high fluorescence intensity. Dif-
ferentiation between the two types of oils is better 
when the chlorophylls fluorescence region is not 
included in the models. In this case, oxidation 
products are the species that contribute most to 
the separation between the two groups (Guimet 
et al. 2004).

Extra virgin olive oil is the highest-quality and 
the most expensive type of olive oil. It is sometimes 
adulterated with olive-pomace oil (OPO). Guimet et 
al. (2005) developed a fast screening method based 
on EEMs for detecting adulteration with OPO at 
5% level in extra virgin olive oil. Adulteration causes 
mainly an increase of fluorescence at emissions 
below 500 nm. The authors applied unfold PCA and 
PARAFAC for exploratory analysis and quantified 
OPO adulteration around 5% level using the PLSR 
method, obtaining a prediction error of 1.2%.

The capabilities of NMF used together with LDA 
for discriminating between the different types of 
oils were also studied. The discrimination results 
obtained with the NMF-LDA were compared to 
those obtained using two other methods (PARAFAC 
combined with LDA and discriminant multiway 
PLSR). NMF-LDA and discriminant multiway PLSR 
yielded a better discrimination between commer-
cial olive oils (virgin, pure, and olive-pomace) than 
PARAFAC-LDA. However, discriminant multiway 
PLSR was the best method for discriminating be-
tween extra virgin olive oils and those adulterated 
with olive-pomace oils. The main advantage of 
NMF with respect to discriminant multiway PLSR 
is that the basic functions are more interpretable 

than the PLS loadings, because they are positive 
and correspond to parts of the spectra that can be 
more easily related to the fluorescent compounds 
of the oils (Guimet et al. 2006).

Virgin olive oils are classified and priced accord-
ing to acidity. Virgin olive oil that has acidity lower 
than 3.3 degrees (% (w/w) free fatty acid content 
calculated as oleic acid) is suitable for consumption 
without any treatment. Virgin olive oils of higher 
acidities (lampante olive oils), are refined in order 
to become edible. The comparison of SFS spectra 
with total luminescence spectra (EEM) collected 
from both edible and lampante olive oils showed a 
reduced spectral complexity and an approximately 
7-fold amplification of fluorescence bands in SFS 
spectra. The wavelength interval ∆λ = 80 nm shows 
the best differentiation between olive oils. For this 
interval value, both edible and lampante virgin 
olive oil spectra show strong intensity bands at 
660 nm and 605 nm. However, edible virgin olive 
oil shows one low intensity band at 370 nm while 
lampante virgin olive oil shows medium intensity 
bands at 385 and 450 nm. In order to compare 
the sets of SFS spectra, PCA and HCA were per-
formed. Maximum differentiation between oils 
was found in the spectral range of 429–545 nm 
originating from oleic acid. Both HCA and PCA 
provide very good discrimination between the two 
virgin olive oil classes, however, PCA allows for 
100% correct classification while HCA for 97.3% 
(Poulli et al. 2005). 

Few papers were published in recent years on 
the use of fluorescence in vegetable oils. Sayago 
et al. (2004) applied fluorescence spectroscopy 
for detecting hazelnut oil adulteration in virgin 
olive oils. 

Total luminescence and SFS techniques were 
tested to characterise and differentiate edible oils, 
including soybean, sunflower, rapeseed, peanut, 
olive, grape seed, linseed, and corn oils. Total lu-
minescence spectra of all oils studied as solutions 
in n-hexane exhibit an intense peak (λex/λem, 
290/320 nm) attributed to tocopherols. Some of the 
oils exhibit a second long-wavelength peak (λex/
λem, 405/670 nm), belonging to pigments of the 
chlorophyll group. Additional bands were present 
arising from unidentified compounds. Similarly, 
bands attributed to tocopherols, chlorophylls, and 
unidentified fluorescent components were detected 
in the SFS spectra. The spectral profiles of SFS 
spectra of different oils vary significantly between 
different oils samples. In order to compare the 
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sets of SFS spectra of different oils, kNN method 
and LDA were performed. The kNN method was 
applied using the entire spectra as input, while 
the linear discrimination method used six excita-
tion and emission wavelength pairs as input. Both 
methods provided a very good discrimination 
between the oil classes with a low classification 
error (Sikorska et al. 2005).

Fluorescence spectrometry and PLSR can be used 
as a rapid technique for evaluating the quality of 
heat-treated extra virgin olive (Cheikhousman 
et al. 2004) and rapeseed oils (Mas et al. 2004).

Miscellaneous

Fluorescence spectroscopy in combination with 
PCA and PLSR provides information on oxidative 
changes in peanuts, pork scratchings, oatmeal, and 
muesli. The differences between fresh and oxidised 
samples are most evident with pork scratchings 
and oatmeal. For pork scratchings, an increase 
in fluorescence at λex/λem around 370/450 nm 
could be due to lipid oxidation, and a decrease 
at λex/λem around 470/530 nm could be related 
to riboflavin. The increase at excitation 430 nm 
(emission 470–510 nm) could be due to increased 
oxidation, as this region has been shown to be 
related to fluorescent protein-bound lipid peroxi-
dation products. PLSR models were constructed 
between fluorescence data and the contents of free 
radicals and volatiles (acetaldehyde, pentanal, or 
hexanal). For pork scratchings, the fluorescence 
technique was able to monitor the progressing 
level of oxidation with good correlations to both 
free radicals and hexanal. With the other three 
products, the results were generally inferior ex-
cept for good correlations between fluorescence 
spectra and free radicals in peanuts ( Jensen et 
al. 2004).

The presence of fluorophores (aromatic amino 
acids, vitamins, cofactors and phenolic compounds) 
in honey makes fluorescence spectroscopy a valu-
able technique to determine the botanical origin 
of honey (Ruoff et al. 2005). Honey fluorescence 
spectra from seven floral origins, namely acacia, 
alpine rose, chestnut, rape, honeydew, alpine poly-
floral and lowland polyfloral were recorded. The 
emission spectra (excitation 250 nm; emission 
280–480 nm) allowed the study of the fluorescence 
of aromatic amino acids, furosine, 5-hydroxymeth-
ylfurfural (HMF) and phenolic compounds. It was 
concluded that emission spectra (280–480 nm) are 

fingerprints allowing good identification of the 
botanical origin of honey. The emission spectra 
(emission 305–500 nm) of tryptophan residues 
in protein after excitation at 290 nm may be con-
sidered as a characteristic fingerprint. Emission 
spectra (emission 300–600nm) recorded after 
excitation at 373 nm showed a maximum located 
around 445 nm which is related to furosine and 
HMF. The FDA applied separately to the first 
10 PCs of the PCA performed on each data table 
can lead to some discrimination between the honey 
types investigated. However, it obviously cannot 
allow studying all the information contained on 
these tables. Thus, the first ten PCs of the PCA 
extracted from each data set were gathered together 
into one matrix and analysed by FDA. Correct 
classification of 100% and 90% was observed for 
the calibration and the validation samples, respec-
tively (Karoui et al. 2007c).

Phenolic acids, stilbenes, anthocyanins, flavanols, 
and tannins are the best known fluorescent mol-
ecules in wines. The nature and amounts of these 
molecules differ from one grape variety to another. 
Wine processing and ageing also have effects on the 
phenolic compounds. In addition, wines contain 
many other compounds (e.g., proteins) that may 
fluoresce. The fluorescence spectra may provide 
useful fingerprints and mainly allow the identi-
fication of wines according to their variety and 
typicality. The ability of the phenolic acids emis-
sion (275–450 nm) and excitation (250–350 nm) 
spectra to differentiate between wines produced 
in France and Germany was investigated by apply-
ing FDA to the principal components of the PCA 
performed on the excitation fluorescence data 
or emission fluorescence data. Two groups were 
created for the investigated wines, i.e., Gamay 
wines and Domfelder wines. Correct classification 
amounting to 93.2% and 100% was observed for the 
emission fluorescence data set and the excitation 
fluorescence data set, respectively. The ability of 
emission and excitation spectra to differentiate 
between typical and non-typical Beaujolais wines 
was investigated by applying FDA to the principal 
components of the PCA performed on the excita-
tion fluorescence data or emission fluorescence 
data. Two groups were created for the investigated 
wines, i.e., typical wines and outsider wines. Cor-
rect classification amounting to 95% and 87% was 
observed for the emission fluorescence data set and 
the excitation fluorescence data set, respectively 
(Dufour et al. 2006).
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Fluorescence spectroscopy allows monitoring 
the changes in the chemical composition of beers 
during storage. A pronounced decrease of fluores-
cence features ascribed to riboflavin was observed 
in samples exposed to light as compared to those 
kept in the dark. PCA of SFS spectra (Δλ = 10 nm 
or Δλ = 60 nm) revealed clear clustering of samples 
according to the storage conditions. Two statisti-
cal methods were employed: the kNN method, 
which uses entire spectra, and the LDA method, 
for which only six selected excitation/emission 
wavelength pairs were extracted from the spec-
tra. Successful classification of differently stored 
samples was accomplished using both the kNN 
and LDA (Sikorska et al. 2006).

The application of fluorescence spectroscopy to 
the food classification is still relatively recent. In 
those reports which do exist, however, the poten-
tial of the technique is clear, especially when it is 
combined with powerful multivariate analysis tools. 
In support to the theoretical advantages of work-
ing with EEMs or SFS as opposed to conventional 
spectra, some selectivity improvements of EEMs 
or SFS do seem to exist in certain instances. The 
principal advantages of fluorescence spectroscopy, 
pointed out by almost all authors, are its rapidity 
and sensitivity (100–1000 times more sensitive 
than other spectrophotometric techniques). In 
addition, fluorescent compounds are extremely 
sensitive to their environments at the molecular 
level. Thus, f luorescence spectroscopy can be 
used as an accurate tool to monitor the molecu-
lar changes which occur during food handling, 
processing, or storing. 

List of abbreviations

EEM 	 – excitation-emission matrix
SFS 	 – synchronous fluorescence scan
PCA 	 – principal component analysis
PCs	 – principal components
HCA 	 – hierarchical cluster analysis
PARAFAC 	– parallel factor analysis
NMF 	 – negative matrix factorisation
CCSWA 	 – common components and specific 	

	     weights analysis
CCA 	 – canonical correlation analysis
PLS 	 – partial least squares
LDA 	 – linear discriminant analysis
FDA 	 – factor discriminate analysis
kNN 	 – k-nearest neighbours
PLSR 	 – partial least squares regression

PCR 	 – principial component regression
NRS 	 – normalised ratio spectra
OPO 	 – olive – pomace oil
HMF	 – 5-hydroxymethylfurfural

R e f e r e n c e s

Andersen Ch.M., Wold J.P., Mortensen G. (2006): 
Light-induced changes in semi-hard cheese determined 
by fluorescence spectroscopy and chemometrics. In-
ternational Dairy Journal, 16: 1483–1489.

Aubourg S.P., Medina I. (1999): Influence of storage 
time and temperature on lipid deterioration during cod 
and haddock frozen storage. Journal of the Science of 
Food Chemistry, 79: 1943–1948.

Bertrand D., Scotter C.N.G. (1992): Application of 
multivariate analyses to NIR spectra of gelatinized 
starch. Applied Spectroscopy, 46: 1420–1425.

Blumberg W.E., Doleiden F.H., Lamola A.A. (1980): 
Hemoglobin determined in 15 microL of whole blood 
by “front-face” fluorometry. Clinical Chemistry, 26: 
409–413.

Bro R. (1997): PARAFAC. Tutorial and applications. 
Chemometrics and Intelligent Laboratory Systems, 
38: 149–171.

Cheikhousman R., Zude M., Bouveresse D.J.-R., 
Rutledge D.N., Birlouez-Aragon I. (2004): Fluo-
rescence spectroscopy for monitoring extra virgin olive 
oil deterioration upon heating. Czech Journal of Food 
Sciences, 22: 147–150.

Christensen J., Miquel Becker E.M., Frederiksen 
C.S. (2005): Fluorescence spectroscopy and PARAFAC 
in the analysis of yogurt. Chemometrics and Intelligent 
Laboratory Systems, 75: 201–208.

Duflos G., Le Fur B., Mulak V., Becel P., Malle P. 
(2002): Comparison of methods of differentiating be-
tween fresh and frozen-thawed fish or fillets. Journal of 
the Science of Food and Agriculture, 82: 1341–1345. 

Dufour E., Frencia J.P., Kane E. (2003): Development 
of a rapid method based on front-face fluorescence 
spectroscopy for the monitoring of fish freshness. Food 
Research International, 36: 415–423. 

Dufour E., Letort A., Laguet A., Lebecque A., Ser-
ra J.N. (2006): Investigation of variety, typicality and 
vintage of French and German wines using front-face 
fluorescence spectroscopy. Analytica Chimica Acta, 
563: 292–299. 

Egelandsdal B., Wold J.P., Sponnich A., Neegård 
S., Hildrum K.I. (2002): On attempts to measure the 
tenderness of Longissimus Dorsi muscles using fluores-
cence emission spectra. Meat Science, 60: 187–202.



	 171

Czech J. Food Sci.	 Vol. 25, No. 4: 159–173

Eisinger J., Flores J. (1979): Front-face fluorometry of 
liquid samples. Analytical Biochemistry, 94: 15–21.

Geladi P. (2003): Chemometrics in spectroscopy. Part 
I. Classical chemometrics. Spectrochimica Acta Part 
B, 58: 767–782.

Genot C., Tonetti F., Montenay-Garestier T., 
Marion D., Drapon R. (1992a): Front-face fluores-
cence applied to structural studies of proteins and 
lipid-protein interactions of visco-elastic food prod-
ucts. 1-Designing of front-face adaptor and validity of 
front-face fluorescence measurements. Sciences des 
Aliments, 12: 199–212.

Genot C., Tonetti F., Montenay-Garestier T., Mar-
ion D., Drapon R. (1992b): Front-face fluorescence 
applied to structural studies of proteins and lipid-
protein interactions of visco-elastic food products. 
2-Application to wheat gluten. Sciences des Aliments, 
12: 687–704.

Guimet F., Ferré J., Boqué R., Rius F.X. (2004): Ap-
plication of unfold principal component analysis and 
parallel factor analysis to the exploratory analysis 
of olive oils by means of excitation emission matrix 
fluorescence spectroscopy. Analytica Chimica Acta, 
515: 75–85.

Guimet F., Ferré J., Boqué R. (2005): Rapid detection of 
olive–pomace oil adulteration in extra virgin olive oils 
from the protected denomination of origin “Siurana” 
using excitation–emission fluorescence spectroscopy 
and three-way methods of analysis. Analytica Chimica 
Acta, 544: 143–152.

Guimet F., Boqué R., Ferré J. (2006): Application of 
non-negative matrix factorization combined with 
Fisher’s linear discriminant analysis for classification 
of olive oil excitation emission fluorescence spectra. 
Chemometrics and Intelligent Laboratory Systems, 
81: 94–106.

Herbert S., Riou N.M., Devaux M.F., Riaublan A., 
Bouchet B., Galllant D.J., Dufour E. (2000): Moni-
toring the identity and the structure of soft cheese by 
fluorescence spectroscopy. Le Lait, 80: 621–634.

Hirsch R.E., Nagel R.L. (1989): Stopped-flow front-face 
fluorometer: A prototype design to measure hemoglobin 
R → T transition kinetics. Analytical Biochemistry, 
176: 19–21.

Hirschfeld T. (1978): Comparison of inner filter ef-
fects in “front face” and total reflection fluorescence. 
Spectrochimica Acta Part A: Molecular Spectroscopy, 
34: 693–694.

Jensen S.A, Reenberg S., Munck L. (1986): U.S. Pat-
ent US4631413.

Jensen P.N., Christensen J., Engelsen S.B. (2004): 
Oxidative changes in pork scratchings, peanuts, oatmeal 

and muesli viewed by fluorescence, near-infrared and 
infrared spectroscopy. European Food Research and 
Technology, 219: 294–304. 

Karoui R., Dufour E. (2003): Dynamic testing rheol-
ogy and fluorescence spectroscopy investigations of 
surface to centre differences in ripened soft cheeses. 
International Dairy Journal, 13: 973–985. 

Karoui R., Dufour E. (2006): Prediction of the rheol-
ogy parameters of ripened semi-hard cheeses using 
fluorescence spectra in the UV and visible ranges re-
corded at a young stage. International. Dairy Journal, 
16: 1490–1497.

Karoui R., Mazerolles G., Dufour E. (2003): Spectro-
scopic techniques coupled with chemometric tools for 
structure and texture determinations in dairy products. 
International Dairy Journal, 13: 607–620. 

Karoui R., Dufour E., Pillonel L., Schaller E., Picque 
D., Cattenoz T., Bosset J.O. (2004): Determining the 
geographic origin of Emmental cheeses produced dur-
ing winter and summer using a technique based on the 
concatenation of MIR and fluorescence spectroscopic 
data. European Food Research and Technology, 219: 
184–189.

Karoui R., Dufour E., Pillonel L., Schaller E., Picque 
D., Cattenoz T., Bosset J.O. (2005a): The potential 
of combined infrared and fluorescence spectroscopies 
as a method of determination of the geographic origin 
of Emmental cheeses. International Dairy Journal, 15: 
287–298.

Karoui R., Bosset J.O., Mazerolles G., Kulmyrzaev 
A., Dufour E. (2005b): Monitoring the geographic 
origin of both experimental French Jura hard cheeses 
and Swiss Gruyère and L’Etivaz PDO cheeses using 
mid-infrared and fluorescence spectroscopies: a pre-
liminary investigation. International Dairy Journal, 
15: 275–286.

Karoui R., Dufour E., De Baerdemaeker J. (2006a): 
Common components and specific weights analysis: A 
tool for monitoring the molecular structure of semi-
hard cheese throughout ripening. Analytica Chimica 
Acta, 572: 125–133.

Karoui R., Kemps B., Bamelis F., De Ketelaere B., 
Decuypere E., De Baerdemaeker J. (2006b): Meth-
ods to evaluate egg freshness in research and industry: 
A review. European Food Research and Technology, 
222: 727–732.

Karoui R., Kemps B., Bamelis F., De Ketelaere B., 
Decuypere E., De Baerdemaeker J. (2006c): Devel-
opment of a rapid method based on front face fluores-
cence spectroscopy for the monitoring of egg freshness: 
1–evolution of thick and thin egg albumens. European 
Food Research and Technology, 223: 303–312.



172	

Vol. 25, No. 4: 159–173	 Czech J. Food Sci.

Karoui R., Kemps B., Bamelis F., De Ketelaere B., 
Merten K., Schoonheydt R., Decuypere E., De 
Baerdemaeker J. (2006d): Development of a rapid 
method based on front-face fluorescence spectroscopy 
for the monitoring of egg freshness: 2–evolution of 
egg yolk. European Food Research and Technology, 
223: 180–188.

Karoui R., Thomas E., Dufour E. (2006e): Utilisation 
of a rapid technique based on front-face fluorescence 
spectroscopy for differentiating between fresh and 
frozen–thawed fish fillets. Food Research International, 
39: 349–355.

Karoui R., Dufour E., Schoonheydt R., De Baer-
demaeker J. (2007a): Characterisation of soft cheese 
by front face fluorescence spectroscopy coupled with 
chemometric tools: Effect of the manufacturing process 
and sampling zone. Food Chemistry, 100: 632–642.

Karoui R., Dufour E., De Baerdemaeker J. (2007b): 
Front face fluorescence spectroscopy coupled with 
chemometric tools for monitoring the oxidation of 
semi-hard cheeses throughout ripening. Food Chem-
istry, 101: 1305–1314.

Karoui R., Dufour E., Bosset J.O., De Baerdemaeker 
J. (2007c): The use of front face fluorescence spectro- 
scopy to classify the botanical origin of honey sam-
ples produced in Switzerland. Food Chemistry, 101: 
314–323.

Kulmyrzaev A., Dufour E., Noël Y., Hanafi M., 
Karoui R., Qannari E.M., Mazerolles G. (2005): 
Investigation at the molecular level of soft cheese 
quality and ripening by infrared and fluorescence 
spectroscopies and chemometrics relationships with 
rheology properties. International Dairy Journal, 15: 
669–678.

Kyriakidis N.B., Skarkalis P. (2000): Fluorescence 
spectra measurement of olive oil and other vegetable 
oils. Journal of AOAC International, 83: 1435–1439.

Mas P.A., Bouveresse D.J.R., Birlouez-Aragon I. 
(2004): Fluorescence spectroscopy for monitoring 
repaseed oil upon heating. Czech Journal of Food 
Sciences, 22: 127–129.

Mazerolles G., Devaux M.F., Dufour E., Qannari 
E.M. (2002): Chemometric methods for the coupling 
of spectroscopic techniques and for the extraction 
of the relevant information contained in the spectral 
data tables. Chemometrics and Intelligent Laboratory 
Systems, 63: 57–68.

Mazerolles G., Hanafi M., Dufour E., Bertrand 
D., Qannari E.M. (2006): Common components and 
specific weights analysis: A chemometric method for 
dealing with complexity of food products. Chemomet-
rics and Intelligent Laboratory Systems, 81: 41–49.

Miquel Becker E., Christensen J., Frederiksen C.S., 
Haugaard V.K. (2003): Front-face spectroscopy and 
chemometrics in analysis of yogurt: rapid analysis of 
riboflavin. Journal of Dairy Science, 86: 2508–2515.

Møller J.K.S., Parolari G., Gabba L., Christensen 
J., Skibsted L.H. (2003): Monitoring chemical changes 
of dry-cured Parma ham during processing by surface 
autofluorescence spectroscopy. Journal of Agricultural 
and Food Chemistry, 51: 1224–1230.

Moon S.K., Yud-Ren CH., Sukwon K., Intaek K., 
Lefcourt A.M., Moonjohn K. (2006): Fluorescence 
characteristics of wholesome and unwholesome chicken 
carcasses. Applied Spectroscopy, 60: 1210–1211.

Munck L., Norgaard L., Engelsen S.B., Bro R., An-
dersson C.A. (1998): Chemometrics in food science  
– a demonstration of the feasibility of a highly ex-
ploratory, inductive evaluation strategy of fundamental 
scientific significance. Chemometrics and Intelligent 
Laboratory Systems, 44: 31–60.

Norgaard L. (1995): A multivariate chemometric ap-
proach to fluorescence spectroscopy. Talanta, 42: 
1305–1324. 

Parker C.A. (1968): Photoluminescence of solutions 
with applications to photochemistry and analytical 
chemistry. In: Parker C.A (ed.): Apparatus and Ex-
perimental Methods. Elsevier: 128–302.

Patra D., Mishra A.K. (2002): Recent developments in 
multi-component synchronous fluorescence scan analy-
sis. Trends in Analytical Chemistry, 21: 787–798. 

Poulli K.I., Mousdis G.A., Georgiou C.A. (2005): Clas-
sification of edible and lampante virgin olive oil based 
on synchronous fluorescence and total luminescence 
spectroscopy. Analytica Chimica Acta, 542: 151–156. 

Ruoff K., Karoui R., Dufour E., Luginbühl W., Bos-
set J.O., Bogdanov S. (2005): Authentication of the 
botanical origin of honey by front-face fluorescence 
spectroscopy, a preliminary study. Journal of Agricul-
tural and Food Chemistry, 53: 1343–1347.

Sayago A., Morales M.T., Aparicio R. (2004): Detection 
of hazelnut oil in virgin olive oil by a spectrofluorimet-
ric method. European Food Research and Technology, 
218: 480–483.

Sikorska E., Górecki T., Khmelinskii I.V., Sikorski 
M., Kozio J. (2005): Classification of edible oils using 
synchronous scanning fluorescence spectroscopy. Food 
Chemistry, 89: 217–225.

Sikorska E., Górecki T., Khmelinskii I.V., Sikorski 
M., De Keukeleire D. (2006): Monitoring beer during 
storage by fluorescence spectroscopy. Food Chemistry, 
96: 632–639.



	 173

Czech J. Food Sci.	 Vol. 25, No. 4: 159–173

Sóti R., Farkas É., Hilbert M., Farkas Zs., Ketskeméty 
I. (1993): Theoretical treatment of reabsorption in lumi-
nescent layers. Journal of Luminescence, 55: 5–10.

Swatland H.J. (1987): Autofluorescence of adipose 
tissue measured with fibre optics. Meat Science, 19: 
277–284.

Swatland H.J. (1994): Physical measurements of meat 
quality: optical measurements, pros and cons. Meat 
Science, 36: 251–259.

Swatland H.J. (2000): Connective and adipose tissue 
detection by simultaneous fluorescence and reflect-
ance measurements with an on-line meat probe. Food 
Research International, 33: 749–757.

Swatland H.J. (2001): A note on the stereological anatomy 
of four probe sites in beef carcasses. Food Research 
International, 34: 633–637.

Veberg A., Vogt G., Wold J.P. (2006): Fluorescence in 
aldehyde model systems related to lipid oxidation. LWT 
– Food Science and Technology, 39: 562–568.

Wold J.P., Jørgensen K., Lundby F. (2002): Nondestruc-
tive measurement of light-induced oxidation in dairy 
products by fluorescence spectroscopy and imaging. 
Journal of Dairy Science, 85: 1693–1704.

Received for publication August 4, 2006
Accepted after corrections April 6, 2007

Corresponding author:

Doc. Ing. Jana Sádecká, PhD., Slovenská technická univerzita v Bratislave, Fakulta chemickej a potravinárskej 
technológie, Ústav analytickej chémie, Radlinského 9, 812 37 Bratislava, Slovenská republika
tel.: + 421 259 325 722(733), fax: + 421 252 926 043, e-mail: jana.sadecka@stuba.sk


