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The rheological properties of cheeses are significantly
connected with their final quality (KFOURY et al. 1989).
Like most of solid biological materials cheeses exhibit
the viscoelastic behaviour. This means that their behav-
iour under some mechanical loading consists of solid
(elastic) and fluid (viscous) behaviour. The viscoelastic
materials are those in which the relationship between stress
and strain depends on time. There are many models of
the viscoelastic behaviour of materials, see e.g. LAKES

(1999) for a review. The choice of a viscoelastic model
and the evaluation of its parameters is based on the use of
some phenomena which occur in viscoelastic materials.
The main phenomena are:
– Creep – if the stress is held constant, the strain increa-

ses with time;
– Relaxation – the stress decreases with time at constant

strain;
– The effective stiffness depends on the rate of load ap-

plication;
– If cyclic loading is applied, hysteresis occurs;
– Acoustic waves experience damping;
– Rebound of an object following an impact is less than

100%;
and many others (LAKES 1999).

���������	
�	����
�	��������	
�	���	��
�
���
���	������
��


�	����	����
�

���������	
����
�������
	��
������������������������������������

�������
�� �!"�#$� %&� �'!�()�#)!�� ����*%!�"#!$� +���,�!#-��#� %&� ./$"�("� ������,�!#-��#� %&�*%%�

��(/�%�%'$
� 	!�%
��0�(/���,)1��(

��
�����

��������	
�����
��	
������
����	
�����������	������������������	
�	����
�	��������	
�	���	��
�
���
���	������
��	
�
���������
�	����� 	��	�!""#���$	
������%&	

The paper deals with the study of the effect of cheese ripening on parameters of a rheological model of cheese mechanical
behaviour. The Edam cheese has been tested by the method of the Hopkinson Split Pressure Bar. The original method of the
evaluation of viscoelastic properties has been used. The rheological model of the three element linear viscoelastic body, so called
“standard linear solid” has been used. This model successfully describes the experimentally observed deformation behaviour of
cheese specimens. The effect of the time of cheese ripening on the parameters of the rheological model has been demonstrated.

Keywords: Edam cheese; ripening; standard model; model parameters; sensory evaluation
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 The development of methods of the evaluation of
cheese viscoelastic properties is described e.g. by KON-
STANCE and HOLSINGER (1992). Recently a new method
of the evaluation of these properties has been developed
(BUCHAR 1996). The use of this method for the evalua-
tion of some cheeses outlined its potential abilities. In the
given paper we have focused on the study of cheese rip-
ening, on the viscoelastic behaviour of Edam cheese. The
obtained viscoelastic properties have been compared with
sensory characteristics. Owing to some exclusivity of the
used procedure the relatively detailed description of its
theoretical base is described.
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In the previous paper (BUCHAR 1996) it was found that
the behaviour of the tested cheeses was described by the
model of the standard linear body (HAMAN & ZDANO-
WICZ  1996). A schematic of this model is shown in Fig. 1.
This model contains three elements. The springs are per-
fectly elastic (σ = E ε). The dashpot is perfectly viscous
(σ = η dε/dt), where η is the dynamic viscosity. The con-
stitutive equation connected with this model has a form:
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Let us follow the dispersion and attenuation of the high
frequency wave, i.e. ω2 >> 1/θ2. Equation [5] shows that
k approaches

[6]

Equation [6] expresses that the phase velocity of the
high frequency wave is independent of the frequency and
it is equal to the velocity of an elastic wave:

[7]

The damping coefficient a of high frequency waves has
the following form:

[8]

That means that the attenuation of high frequency waves
does not depend on the frequency. If we use Eq. [7] and
the definition of θ, we obtain the expression:

[9]

It is obvious that the evaluation of the viscoelastic model
parameters, E

1
, E

2
, η  needs an experimental method which

enables to determine the frequency dependence of the at-
tenuation and phase velocity of the wave. There are many
experimental procedures which use the wave propagation.
One of them is the split Hopkinson bar technique (SHBT).
This method has been widely used by numerous investi-
gators in studies of the dynamic mechanical behaviour of
materials since it was proposed by KOLSKY (1949). Ba-
sically, this technique consists of sandwiching a short cy-
lindrical specimen of test material between two long elastic
bars as shown in Fig. 2.

A stress pulse σ
I
 (t) is initiated in the first bar by the

impact of a striker bar. This incident stress pulse loads
the test specimen, and as a result of its interaction with
the specimen, a reflected stress pulse σ

R
 (t) and a trans-

mitted stress pulse σ
T
 (t) are generated at the left and at
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or in a differential form:

[2]
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��ηθ =

The main problem consists in the evaluation of the pa-
rameters E

1
, E

2
 and θ. The procedure suggested in BU-

CHAR (1996) uses the stress wave propagation. If we take
the one-dimensional stress state, the wave has a form:

[3]
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The dependence of k(ω) or phase velocity c(ω) on the
frequency describes the dispersion of waves, and the de-
pendency α = α(ω) describes the attenuation and dissi-
pation of waves. If we use the main equations describing
the one-dimensional wave motion (see e.g. ACHENBACH

1973) we can express Eq. [2] in terms of particle dis-
placement as:

[4]
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If we insert Eq. [3] into Eq. [4], we obtain a complex
equation. Its solution for the real and imaginary part (BU-
CHAR 1996) leads to the following expressions for the
damping coefficient and wave number:
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If the specimen behaves as elastic body, the function T
can be expressed as (BREKHOVSKICH 1973):

[11]
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"
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Its value is independent of the frequency. If the speci-
men is from a viscoelastic material, the acoustic imped-
ance Z

s
 is a complex number dependent on the frequency

(AKI & RICHARDSON 1980).

[12]

The transmission of the stress pulse is then given by
the function:

[13]

These relations enable to obtain the frequency depen-
dence of the attenuation and phase velocity. If we per-
form the experiment shown in Fig. 2, we obtain the
functions σ

I
 (t) and σ

T
 (t). Then we perform the Fourier

transform in order to obtain the spectral functions S
I
 and

S
T
 and the function of T – see Eq. [10]. If we compare the

experimental values of T with the theoretical values giv-
en by Eq. [13] we can obtain Z

s
 and Θ. In this way we can

obtain the values of c(ω) and α(ω) at different frequen-
cies. Using Eqs. [5] and [7] we may obtain the values of
parameters E

1
, E

2 
and η.
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the right interfaces of the specimen, respectively. If we
use the obvious assumptions (BUCHAR & BILEK 1984)
we may obtain some material characteristics, e.g.:
– stress in the specimen σ (t) = σ

T
 (t) = σ

I
 (t) + σ

R
 (t)

– strain rate and strain in the specimen:
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For our purposes it is convenient to use the frequency
domain where the stress pulses are expressed as:

- �+�����%�,1��*+(.�4)3�*$"3

The corresponding spectral functions enable to intro-
duce the functions describing the transmission and reflec-
tion of the stress pulse in the frequency domain as:

[10]
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Edam cheese of different age (1–59 weeks) was analy-
sed. Samples were prepared from commercially manu-
factured Edam bricks; with 30% and 45% fat in dry
matter (FDM). A dairy plant processes about 50 000 l
of milk a day in a standard manufacturing schedule. Ap-
proximately ten sets of 210 Edam bricks (in each batch)
are produced. Immediately after salting, 6 bricks (ran-
domly chosen) from different batches were cut to 5 slic-
es (each about 0.5 kg) and vacuum-packaged in cryovac
foil. Samples were stored at 10°C for measurements af-
ter given periods. From the block of cheese the speci-
mens of 14 mm in diameter and 7 mm in thickness were
prepared. These specimens were tested using the meth-
od shown in Fig. 2. The test bars are made of PMMA.
The acoustic impedance of PMMA is 3.18 MPas/m. The
loading stress pulses were initiated by the impact of a
short PMMA bar (20 mm in length). An example of the
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experimental record of the stress pulses σ
I
 (t), σ

T 
(t) and

σ
R
 (t) is given in Fig. 3.
The corresponding strain and strain rate are shown in

Fig. 4.
These time dependences were computed for the stress

pulses displayed in Fig. 3.
These pulses, namely σ

I
 (t) and σ

T
 (t) were expressed in

form of Fourier integral. In this way the function T(ω)
which characterises the transmission of the stress pulse
through the specimen was obtained. This function is com-
plex, i.e.

[14]

An example of the frequency dependence of the ampli-
tude of the transmission function T is shown in Fig. 5.

Now we can use the theoretical value of T and by a
comparison with the experimental values one can obtain

��

�I��01��I���

�

��

�

�

�

��

�

�
�!(#'���

������

=ϕ+=

ϕ=ω+ω=ω

��
�

��
�

��
�

��
�

���

���

���

���

��	

��


�

���



(

Czech J. Food Sci. Vol. 19, No. 1: 1–7

the value of α(ω) and c(ω). The procedure is very com-
plicated and it is convenient to use the MAPLE software
or any similar program. In this way we obtain the left sides
of Equations [5]. These are two equations for three un-
known parameters E

1
, E

2
 and θ. It means we need another

equation. We can use Equation [7] which describes the
value of c for the infinite frequency. These three equa-
tions, i.e. [5] and [7], enable to obtain the parameters of
the rheological model which is shown in Fig. 1. These
equations are highly nonlinear and the use of the software
mentioned above is very convenient. This procedure was
applied to the experimental results obtained for the spec-
imens of the Edam cheese. For every stage of cheese rip-
ening these parameters were determined for three different
incident stress pulses (different velocities of the impact
of the striker – see Fig. 2). The resulting value of the rheo-
logical parameter represents an average of these values.
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The parameters of the rheological model shown in Fig. 1
are given in Table 1.

In the given table the values of stress wave propagation
at infinite frequency – see Eq. [7] – are also given togeth-
er with the values of viscosity (Fig. 1). The quantities given
in Table 1 decrease with the time of cheese ripening. This
tendency is manifested in Figs. 6–9.

Time of the Cheese Ripening: The obtained results
enable to evaluate the dependence of damping and phase
velocity on the frequency. The phase velocity c(ω) and
damping α(ω) increase with the frequency up to some
limit value given by Eqs. [7] and [8]. The phase velocity
c(ω) decreases with the time of cheese ripening (Fig. 9).
The damping coefficient at infinite frequency increases
with the frequency as shown in Fig. 10.
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It means that the stress pulse is attenuated during its
propagation. This attenuation increases with the time of
cheese ripening.
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The increase is remarkable namely for a time higher
than about 18 weeks. The knowledge of this coefficient is
very useful for the description of stress pulse propagation
in the viscoelastic body. Let us take a block of viscoelas-
tic body which is impacted by a projectile moving with
some velocity. If we use a very simple description of this
process, the dependence of the stress in the block on the
distance x, in the direction of the wave propagation is
given by the equation (e.g. WANG et al. 1994):
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