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Abstract

BUCHAR 1J., KUBIS L., GAJDUSEK S., KRIVANEK 1. (2001): Influence of cheese ripening on the viscoelastic behaviour of

Edam cheese. Czech. J. Food Sci., 19: 1-7.

The paper deals with the study of the effect of cheese ripening on parameters of a rheological model of cheese mechanical
behaviour. The Edam cheese has been tested by the method of the Hopkinson Split Pressure Bar. The original method of the
evaluation of viscoel astic properties has been used. Therheological model of the three element linear viscoelastic body, so called
“standard linear solid” has been used. This model successfully describes the experimentally observed deformation behaviour of
cheese specimens. The effect of the time of cheese ripening on the parameters of the rheological model has been demonstrated.
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The rheological properties of cheeses are significantly
connected with their final quality (KFOURY et al. 1989).
Like most of solid biological materials cheeses exhibit
the viscoel astic behaviour. This meansthat their behav-
iour under some mechanical loading consists of solid
(elastic) and fluid (viscous) behaviour. The viscoelastic
material sarethosein which the rel ationship between stress
and strain depends on time. There are many models of
the viscoelastic behaviour of materias, see e.g. LAKES
(1999) for areview. The choice of a viscoelastic model
and the evaluation of its parametersis based on the use of
some phenomena which occur in viscoelastic materials.
The main phenomena are:

— Creep —if the stress is held constant, the strain increa-
seswith time;

— Relaxation — the stress decreases with time at constant
strain;

— The effective stiffness depends on the rate of load ap-
plication;

—If cyclic loading is applied, hysteresis occurs;

—Acoustic waves experience damping;

— Rebound of an object following an impact is less than

100%;
and many others (LAKES 1999).

The development of methods of the evaluation of
cheese viscoel astic properties is described e.g. by KON-
STANCE and HOL SINGER (1992). Recently anew method
of the evaluation of these properties has been devel oped
(BUCHAR 1996). The use of this method for the evalua-
tion of some cheeses outlined its potential abilities. Inthe
given paper we have focused on the study of cheeserip-
ening, on the viscoel astic behaviour of Edam cheese. The
obtai ned viscoel asti ¢ properties have been compared with
sensory characteristics. Owing to some exclusivity of the
used procedure the relatively detailed description of its
theoretical base is described.

Theoretical Background

In the previous paper (BUCHAR 1996) it wasfound that
the behaviour of the tested cheeses was described by the
model of the standard linear body (HAMAN & ZDANO-
WICZ 1996). A schematic of thismodel isshowninFig. 1.
Thismodel containsthree elements. The springs are per-
fectly elastic (o = E €). The dashpot is perfectly viscous
(o = n de/dt), where n isthe dynamic viscosity. The con-
stitutive equation connected with this model has aform:

L de t—7
o()=Ege()+ Ez(f)(g)-exp(—T)dT [1]
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Fig. 1. Schematic of the
standard linear solid

or in adifferential form:

do(t) + o@) _ (E, + Ey) de(t) +ﬁ 2]
dt 0 dt 0
where: ¢ — relaxation time
0=n/E,

The main problem consistsin the evaluation of the pa-
rameters E,, E, and 6. The procedure suggested in Bu-
CHAR (1996) usesthe stresswave propagation. If wetake
the one-dimensional stress state, the wave has aform:

u(x,t) = A.exp(—o.x).exp[- I (ot — kx) ]
o (3
c(®)

k(o) =

where: u — particle displacement
x — distance in the direction of the wave propagation
o — angular frequency
I — denotes the imaginary unit
o = ow) — damping coefficient
c(w) — phase velocity
k(w) — wave number

The dependence of k(w) or phase velocity c(w) on the
frequency describes the dispersion of waves, and the de-
pendency oo = ai(w) describes the attenuation and dissi-
pation of waves. If we use the main equations describing
the one-dimensional wave motion (seee.g. ACHENBACH
1973) we can express Eqg. [2] in terms of particle dis-
placement as:

9% (x,1) % (x,1)
%u (x,1) or? Pux,y o2
ot =E 4 [4]
P TP e o 0

where: p — material density

If weinsert Eq. [3] into Eq. [4], we obtain a complex
equation. Itssolution for thereal and imaginary part (Bu-
CHAR 1996) leads to the following expressions for the
damping coefficient and wave number:

, e 1+[1+§2]w262
a(w)2 _pw 1+w B 1

- 2E 2 2
R 1+& w0* 1+ 1+& 0’0*
EI El

_ 1+ 1+2 ’0’
1+ 0’0’ E, [5]

EY E Y
I+ 1+ =2 | 00 1+|1+=2 | 0’0’
El EI

Let usfollow the dispersion and attenuation of the high
frequency wave, i.e. w? >> 1/62. Equation [5] shows that

k approaches

K2~ pw’

T E+E, (6l

Equation [6] expresses that the phase velocity of the
high frequency waveisindependent of the frequency and
itisequal to the velocity of an elastic wave:

2 _ »* _E+E (7
k? p
The damping coefficient aof high frequency waves has
thefollowing form:

o= PE3 (8l
40%(E, + E,)°
That meansthat the attenuation of high frequency waves
does not depend on the frequency. If we use Eq. [7] and
the definition of 6, we obtain the expression:

o= E2 = pcm [9]
20c..(Ey + Ey) m (1_'_@)2
E

Itisobviousthat the eval uation of theviécoel astic model
parameters, E,, E,,  needsan experimental method which
enabl es to determine the frequency dependence of the at-
tenuation and phase velocity of thewave. There are many
experimental procedureswhich use the wave propagation.
One of themisthe split Hopkinson bar technique (SHBT).
This method has been widely used by numerous investi-
gatorsin studies of the dynamic mechanical behaviour of
materials since it was proposed by KOLSKY (1949). Ba
sically, thistechnique consists of sandwiching ashort cy-
lindrical specimen of test material between two long elastic
bars as shown in Fig. 2.

A stress pulse o, (t) isinitiated in the first bar by the
impact of a striker bar. This incident stress pulse loads
the test specimen, and as a result of its interaction with
the specimen, a reflected stress pulse o, (t) and atrans-
mitted stress pulse o (t) are generated at the left and at

Propecile Inputbar  Specimen Crtput baw

m il | 1 il

i

Fig. 2. Schematic of the Hopkinson Split Pressure Bar method
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the right interfaces of the specimen, respectively. If we
use the obvious assumptions (BUCHAR & BILEK 1984)
we may obtain some material characteristics, e.g.:
—stressin the specimen o (t) = o, () = o, (1) + o, (1)

— strain rate and strain in the specimen:

()= éz(t)-crzkgt)—ér(t)
I ()= J.f de

where: Z, — acoustic impedance of the bar

Z,=p,c, p,— material density
¢, — one-dimensional wave velocity

[ — specimen length

For our purposes it is convenient to use the frequency
domain where the stress pulses are expressed as:

o,()= 1 TS, (w).exp(lwt)dw
TL —oo
1 oo
6, ()= _[ST (0).exp(Jot)do
n —oo
o, ()= 1 TSR (w).exp(lwt)dw
n —oo

SI.T.R = J.GI.T.R exp(—lwt)dt
where: S — spectral function

The corresponding spectral functions enable to intro-
duce thefunctions describing the transmission and reflec-
tion of the stress pulsein the frequency domain as:

If the specimen behaves as el astic body, the function T
can be expressed as (BREKHOVSKICH 1973):

ZS ((l)) = pim

)
Tﬂ))+ To(w)

(11]

where: Z — acoustic impedance of the specimen

Its value is independent of the frequency. If the speci-
men is from a viscoelastic material, the acoustic imped-
ance Z_isacomplex number dependent on the frequency
(AKI & RICHARDSON 1980).

47,7 exp(Iwl)

T(w)= ;
2| Z -7,
z,+2,) {l (Z +ZhJ exp(2[(1)la)}

(12]

The transmission of the stress pulse is then given by
the function:

4Z Z, exp (1O1)
-z Y (13]
(Z, +Zh)z{l—(z“ Z”J exp (12(910)}

T(w)=

Z +Z

s b

-9
0= @) + lo(w)

These relations enable to abtain the frequency depen-
dence of the attenuation and phase velocity. If we per-
form the experiment shown in Fig. 2, we obtain the
functions o, (t) and o (t). Then we perform the Fourier
transform in order to obtain the spectral functions § and
S, and thefunction of T—seeEq. [10]. If we comparethe
experimental values of T with the theoretical values giv-
enby Eq. [13] wecan obtain Z_and ©. Inthisway we can
obtain the values of c(w) and ai(w) at different frequen-
cies. Using Egs. [5] and [7] we may obtain the values of
parameters E , E,and .

=48
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Fig. 3. Example of the experi-
0 mental record of the stress
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pulses 6, (), 6,(¢) and G, ().
Impact velocity of the striker
bar was 24.87 m/s (one week
of ripening)
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MATERIAL AND PROCEDURE

Edam cheese of different age (1-59 weeks) was analy-
sed. Samples were prepared from commercially manu-
factured Edam bricks; with 30% and 45% fat in dry
matter (FDM). A dairy plant processes about 50 000 |
of milk aday in astandard manufacturing schedule. Ap-
proximately ten sets of 210 Edam bricks (in each batch)
are produced. Immediately after salting, 6 bricks (ran-
domly chosen) from different batcheswere cut to 5 slic-
es (each about 0.5 kg) and vacuum-packaged in cryovac
foil. Sampleswere stored at 10°C for measurements af -
ter given periods. From the block of cheese the speci-
mens of 14 mm in diameter and 7 mm in thicknesswere
prepared. These specimens were tested using the meth-
od shown in Fig. 2. The test bars are made of PMMA.
The acoustic impedance of PMMA is3.18 MPas/m. The
loading stress pulses were initiated by the impact of a
short PMMA bar (20 mm in length). An example of the

1.1

(64  Fig. 4. The strain and strain
rate as functions of time. These
time dependences have been
computed for the stress pulses
displayed in Fig. 3
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experimental record of the stress pulses o, (t), o (t) and
o, (t) isgivenin Fig. 3.

The corresponding strain and strain rate are shown in
Fig. 4.

These time dependences were computed for the stress
pulses displayed in Fig. 3.

These pulses, namely o, (t) and o (t) were expressedin
form of Fourier integral. In this way the function T(w)
which characterises the transmission of the stress pulse
through the specimen was obtained. Thisfunction iscom-
plex,i.e.

T(0=T(@)+I*T,()=Texp (I *¢)

T=.\T+T;

An example of the frequency dependence of the ampli-
tude of the transmission function T isshownin Fig. 5.

Now we can use the theoretical value of T and by a
comparison with the experimental values one can obtain

T [14]
= s 22
p=arc g(Tz)
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Fig. 5. Experimental values of the amplitude
of the transmission function 7. The data have

10 10
Frequency [1/s]

been obtained from the stress pulses reported
in Fig. 3
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the value of a(w) and c¢(w). The procedure is very com-
plicated and it is convenient to use the MAPLE software
or any similar program. Inthisway we obtain theleft sides
of Equations [5]. These are two equations for three un-
known parameters E,, E, and 0. It means we need another
equation. We can use Equation [7] which describes the
value of c for the infinite frequency. These three equa-
tions, i.e. [5] and [7], enable to obtain the parameters of
the rheological model which is shown in Fig. 1. These
equations are highly nonlinear and the use of the software
mentioned aboveisvery convenient. This procedure was
applied to the experimental results obtained for the spec-
imens of the Edam cheese. For every stage of cheeserip-
ening these parameterswere determined for three different
incident stress pulses (different velocities of the impact
of the striker —see Fig. 2). Theresulting value of the rheo-
logical parameter represents an average of these values.

Elastic moduli [MPa]

Time of ripening [weeks]

Fig. 6. The effect of the time of cheese ripening on the elastic
moduli
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Fig. 7. The effect of the time of cheese ripening on the relaxa-
tion time
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RESULTS AND DISCUSSION

The parameters of therheological model showninFig. 1
aregivenin Table 1.

Inthe given tablethe values of stresswave propagation
at infinitefrequency —see Eq. [ 7] —are a so given togeth-
er withthevauesof viscosity (Fig. 1). Thequantitiesgiven
in Table 1 decrease with thetime of cheeseripening. This
tendency is manifested in Figs. 6-9.

Time of the Cheese Ripening: The obtained results
enabl e to evaluate the dependence of damping and phase
velocity on the frequency. The phase velocity c(w) and
damping a(w) increase with the frequency up to some
limit value given by Egs. [7] and [8]. The phase velocity
¢(w) decreases with the time of cheese ripening (Fig. 9).
The damping coefficient at infinite frequency increases
with the frequency as shown in Fig. 10.
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Fig. 8. The effect of the time of cheese ripening on viscosity
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Fig. 9. The effect of the time of cheese ripening on the veloci-
ties of the high frequency waves
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Table 1. The parameters of the Edam cheese rheological model

Time of ripening Density E, E, 0 Coo n
[weeks] [kg/m®] [MPa] [MPa] [us] [m/s] [kPas]
1 1070 380 420 195 873 81.9
2 1080 380 400 190 850 76.0
3 1050 360 410 182 856 73.8
5 1020 360 400 171 863 68.4
6 1020 350 390 165 852 64.4
12 1000 30 360 140 812 50.4
14 1100 310 360 132 780 47.5
18 1060 280 320 117 752 37.4
33 1070 210 270 76 670 20.5
40 1080 200 240 58 638 13.9
59 1060 140 200 32 566 6.4

Limit value of damping [1/m]

0 T T T T T
0 10 20 30 40 50 60

Time of ripening [weeks]

Fig. 10. The frequency dependence of the limit value of damp-
ing coefficient (see Eq. 8)

The increase is remarkable namely for a time higher
than about 18 weeks. The knowledge of thiscoefficientis
very useful for the description of stress pulse propagation
in the viscoelastic body. Let ustake ablock of viscoelas-
tic body which is impacted by a projectile moving with
some velocity. If we use avery simple description of this
process, the dependence of the stressin the block on the
distance x, in the direction of the wave propagation is
given by the equation (e.g. WANG et al. 1994):

pc.,
n(l+=L)?
n( E)

2

o(x)=0,exp| — x | =exp (—ox)

where: o — given by the Eq. [8]

It means that the stress pulse is attenuated during its
propagation. This attenuation increases with the time of
cheeseripening.
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Souhrn

BUCHAR J., KUBIS 1., GAJDUSEK S., KRIVANEK I. (2001): Vliv zrani syra na vazkopruZné vlastnosti eidamského syra.
Czech J. Food Sci., 19: 1-7.

Byl sledovén vliv doby zrani na parametry reologického modelu eidamského syra. Vzorky syra byly zatézovany metodou
Hopkinsonovy mérné délené tyce. Byla navrzena pivodni metoda hodnoceni vysledki tohoto zpisobu zatézovani, kterd umoziuje
sledovat vazkopruzné vlastnosti. Ukazuje se, Ze tyto vlastnosti jsou popsany v ramci tzv. standardniho modelu linearniho télesa.
Je vyhodnocen vliv doby zrani na parametry tohoto modelu.

Kli¢ova slova: Eidamsky syr; zrani; standardni model; utlum; elasticita
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