Czech J. Food Sci., X:X | DOI: 10.17221/42/2025-CJFS

Enhancing vitamin C stability through liposomal encapsulation with optimised pressure and cycle conditionsOriginal Paper

Özlem Üstün-Aytekin ORCID...
Department of Nutrition and Dietetics, Faculty of Hamidiye Health Sciences, University of Health Sciences, İstanbul, Türkiye

Encapsulation technology offers an effective strategy to enhance the bioavailability and stability of vitamin C by addressing its sensitivity to environmental factors. This study investigates the impact of formulation parameters, particularly lecithin concentration and high-pressure processing conditions, on the physicochemical properties, gastrointestinal stability, cytotoxicity, and shelf life of liposomal vitamin C formulations. Among the tested samples, Sample 1, prepared with 20% soybean lecithin and 20% ascorbic acid and processed at 400 bar with a single cycle, demonstrated superior performance. It exhibited a high zeta potential (−23.17 mV), uniform size distribution (317.5 ± 8.863 nm) and encapsulation efficiency of 77.6%, along with 85% vitamin C retention under simulated gastrointestinal conditions. Cellular uptake in Caco-2 cells reached 30%, and structural integrity was preserved for 240 days at 40 °C, indicating strong thermal stability. The results underscore that lecithin concentration had the most significant influence on encapsulation efficiency and liposome stability, compared to pressure intensity or the number of processing cycles. Furthermore, modulating the zeta potential through lipid composition and the energy applied to phospholipid solutions was found to be critical for improving bioavailability and ensuring long-term dispersion stability. In conclusion, the optimised liposomal formulation offers a promising vehicle for advanced vitamin C delivery with enhanced protection, bioaccessibility, and storage potential.

Keywords: hospholipid-based delivery systems; high-pressure processing; stability; size; encapsulation efficiency

Received: March 14, 2025; Revised: August 18, 2025; Accepted: August 29, 2025; Prepublished online: December 16, 2025 

Download citation

References

  1. Al Sabbagh C., Tsapis N., Novell A., Calleja-Gonzalez P., Escoffre J.-M., Bouakaz A., Chacun H., Denis S., Vergnaud J., Gueutin C.. Fattal E. (2015): Formulation and pharmacokinetics of thermosensitive stealth ® liposomes encapsulating 5-Fluorouracil. Pharmaceutical Research, 32: 1585-1603. Go to original source... Go to PubMed...
  2. Amiri S., Rezazadeh-Bari M., Alizadeh-Khaledabad M., Amiri S. (2019): New formulation of vitamin C encapsulation by nanoliposomes: Production and evaluation of particle size, stability and control release. Food Science and Biotechnology, 28: 423-432. Go to original source... Go to PubMed...
  3. Anjani Q.K., Pandya A.K., Demartis S., Domínguez-Robles J., Moreno-Castellanos N., Li H., Gavini E., Patravale V.B., Donnelly R.F. (2023): Liposome-loaded polymeric microneedles for enhanced skin deposition of rifampicin. International Journal of Pharmaceutics, 646: 123446. Go to original source... Go to PubMed...
  4. Bedhiafi T., Idoudi S., Fernandes Q., Al-Zaidan L., Uddin S., Dermime S., Billa N., Merhi M. (2023): Nano-vitamin C: A promising candidate for therapeutic applications. Biomedicine & Pharmacotherapy, 158: 114093. Go to original source... Go to PubMed...
  5. FDA (2003): Q1A (R2): Stability Testing of New Drug Substances and Products. Silver Spring, FDA. Available at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q1ar2-stability-testing-new-drug-substances-and-products
  6. Frank J., Schiborr C., Kocher A., Meins J., Behnam D., Schubert-Zsilavecz M., Abdel-Tawab M. (2017): Transepithelial transport of curcumin in Caco-2 cells is significantly enhanced by micellar solubilisation. Plant Foods for Human Nutrition, 72: 48-53. Go to original source... Go to PubMed...
  7. Gurhan P., Ongel K., Tozun M. (2022): Evaluation of the effect of the Covid-19 pandemic on the use of food supplements in individuals aged 18 and over. European Journal of Environment and Public Health, 6: em0112. Go to original source...
  8. Hubatsch I., Ragnarsson E.G., Artursson P. (2007): Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nature Protocols, 2: 2111-2119. Go to original source... Go to PubMed...
  9. Korkmaz S., Aydin H.B., Korkmaz B.I.C. (2023): In vitro vitamin C equivalent antioxidant capacity, cytotoxicity and anti-cancer activity of methanolic Urtica Dioica L. leaf extract as a food supplement. Selcuk Journal of Agriculture and Food Sciences, 37: 497-504. Go to original source...
  10. Lin X., Li B., Wen J., Wu J., Tang D., Yu Y., Xu Y., Xu B. (2022): Storage stability and in vitro bioaccessibility of liposomal betacyanins from red pitaya (Hylocereus polyrhizus). Go to original source...
  11. Molecules, 27: 1193.
  12. £ukawski M., Da³ek P., Borowik T., Fory¶ A., Langner M., Witkiewicz W., Przyby³o M. (2020): New oral liposomal vitamin C formulation: Properties and bioavailability. Journal of Liposome Research, 30: 227-234. Go to original source... Go to PubMed...
  13. Marketsandmarkets (2024): Dietary Supplements Market by Type, Function, Mode of Application, Target Consumer, Distribution Channel and Region-Global Forecast to 2028. Available at https://www.marketsandmarkets.com/Market-Reports/dietarysupplements-market-973.html (accessed Dec 15, 2025).
  14. Mehta M., Bui T.A., Yang X., Aksoy Y., Goldys E.M., Deng W. (2023): Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Materials Au, 3: 600-619. Go to original source... Go to PubMed...
  15. Mendez K.M., Broadhurst D.I., Reinke S.N. (2020): Migrating from partial least squares discriminant analysis to artificial neural networks: A comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks. Metabolomics, 16: 17. Go to original source... Go to PubMed...
  16. Minekus M., Alminger M., Alvito P., Ballance S., Bohn T., Bourlieu C., Carrière F., Boutrou R., Corredig M., Dupont D., Dufour C., Egger L., Golding M., Karakaya S., Kirkhus B., Le Feunteun S., Lesmes U., Macierzanka A., Mackie A., Marze S., McClements D.J., Ménard O., Recio I., Santos C.N., Singh R.P., Vegarud G.E., Wickham M.S.J., Weitschies W., Brodkorb A. (2014): A standardised static in vitro digestion method suitable for food - An international consensus. Food & Function, 5: 1113-1124. Go to original source... Go to PubMed...
  17. Moghimipour E., Rezaei M., Ramezani Z., Kouchak M., Amini M., Angali K.A., Dorkoosh F.A., Handali S. (2018): Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. European Journal of Pharmaceutical Sciences, 114: 166-174. Go to original source... Go to PubMed...
  18. Moussa N., Al-Haushey L. (2015): The shelf life of vitamin C in a w/o emulsion according to the Q10 method. International Journal of Pharmaceutical Sciences Review and Research, 30: 33-39.
  19. Nsairat H., Khater D., Sayed U., Odeh F., Al Bawab A., Alshaer W. (2022): Liposomes: Structure, composition, types, and clinical applications. Heliyon, 8: e09394. Go to original source... Go to PubMed...
  20. Pal S., Jana N.R. (2022): Enhanced therapeutic applications of vitamin C via nanotechnology-based pro-oxidant properties: A review. ACS Applied Nano Materials, 5: 4583-4596. Go to original source...
  21. Phimolsiripol Y., Suppakul P. (2016): Techniques in shelf life evaluation of food products. In: Reference Module in Food Sciences. Amsterdam, Elsevier: 1-8. Go to original source...
  22. Rasmussen M.K., Pedersen J.N., Marie R. (2020): Size and surface charge characterization of nanoparticles with a salt gradient. Nature Communications, 11: 2337. Go to original source... Go to PubMed...
  23. Romano E., Palladino R., Cannavale M., Lamparelli E.P., Maglione B. (2024): Enhanced stability of oral vitamin C delivery: A novel large-scale method for liposomes production and encapsulation through dynamic high-pressure microfluidization. Nanomaterials, 14: 516. Go to original source... Go to PubMed...
  24. Smith M.C., Crist R.M., Clogston J.D., McNeil S.E. (2017): Zeta potential: A case study of cationic, anionic, and neutral liposomes. Analytical and bioanalytical chemistry, 409: 5779-5787. Go to original source... Go to PubMed...
  25. Vergara D., López O., Bustamante M., Shene C. (2020): An in vitro digestion study of encapsulated lactoferrin in rapeseed phospholipid-based liposomes. Food Chemistry, 321: 126717. Go to original source... Go to PubMed...
  26. Vinardell M.P., Mitjans M. (2015): Antitumor activities of metal oxide nanoparticles. Nanomaterials, 5: 1004-1021. Go to original source... Go to PubMed...
  27. Wang S., Shi Y., Tu Z., Zhang L., Wang H., Tian M., Zhang N. (2017): Influence of soy lecithin concentration on the physical properties of whey protein isolate-stabilized emulsion and microcapsule formation. Journal of Food Engineering, 207: 73-80. Go to original source...
  28. Xia H., Tang Y., Huang R., Liang J., Ma S., Chen D., Feng Y., Lei Y., Zhang Q., Yang Y., Huang Y. (2022): Nanoliposome use to improve the stability of phenylethyl resorcinol and serve as a skin penetration enhancer for skin whitening. Coatings, 12: 362. Go to original source...
  29. ¯muda P., Khaidakov B., Krasowska M., Czapska K., Dobkowski M., Guzowski J., Kowalczyk P., Lemke K., Folwarski M., Fory¶ A., Domian E., Postu³a M. (2024): Bioavailability of liposomal vitamin C in powder form: A randomized, double-blind, cross-over trial. Applied Sciences, 14: 7718. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.