https://doi.org/10.17221/47/2021-CJFS

Enhancement of GABA content in Hongqu wine by optimisation of fermentation conditions using response surface methodology

Cuina Song¹, Liping Zhu², Yanchun Shao^{1,3}*, Fusheng Chen^{1,3}

The authors are fully responsible for both the content and the formal aspects of the electronic supplementary material. No editorial adjustments were made.

Electronic supplementary material

Supplementary Tables S1-4

¹College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China

²Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye City, China

³Hubei International Scientific and Technological Cooperation Base of Traditionally Fermented Foods, Wuhan, China

^{*}Corresponding author: yanchunshao@mail.hzau.edu.cn

https://doi.org/10.17221/47/2021-CJFS

Table S1. Design of response surface experimental

Factors	V · 11		Level			
	Variable	-1	0	1		
A	Amount of water added (%, v/w)	90	120	150		
В	рН	3.6	3.8	4		
C	Hongqu seed inoculum (%, v/w)	20	30	40		

Table S2. Experimental results of response surface experimental

D		GABA		
Run -	A	В	С	(mg L^{-1})
1	-1	0	1	641.32
2	-1	-1	0	618.05
3	1	0	-1	556.20
4	0	0	0	681.36
5	-1	0	-1	613.77
6	0	1	1	643.90
7	1	0	1	595.96
8	1	-1	0	607.71
9	0	0	0	682.44
10	0	0	0	688.55
11	0	0	0	700.86
12	0	-1	1	649.54
13	0	1	-1	609.12
14	-1	1	0	622.28
15	0	0	0	693.72
16	1	1	0	593.14
17	0	-1	-1	638.26

 $GABA - \gamma$ -aminobutyric acid

Table S3. Analysis of variance of the calculated model of process parameters

Sources	Sum of squares	df	Mean squares	F	P
Model	26 196.43	9	2 910.71	22.69	0.0002***
Residual	898.15	7	128.31	_	_
Lack of fit	634.35	3	211.45	3.21	0.1449
Pure error	263.80	4	65.95	_	_

If a factor has a P-value of less than 0.05, it is a significant factor; *P < 0.05, **P < 0.01, *** P < 0.001

Table S4. Analysis of variance for regression

SD	Mean	CV %	PRESS	R^2	Adjusted R ²	Pred. R ²	Adeq. precision
11.33	637.42	1.78	10 561.74	0.9669	0.9242	0.6102	14.112

 $SD-standard\ deviation;\ CV-coefficient\ of\ variation;\ PRESS-predicted\ sum\ of\ the\ mean\ squares$