Czech J. Food Sci., 2025, 43(4):300-310 | DOI: 10.17221/144/2024-CJFS

Effect of different heat treatments on physicochemical properties and antioxidant characteristics of black beansOriginal Paper

Xiaolong Ji1,2, Shuli Zhang1, Xin Du1, Yuning Zhang1, Yang Yao3, Yingying Zhu1,2
1 College of Food and Bioengineering, Zhengzhou R&D Center for High-quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou, P.R. China
2 National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou, P.R. China
3 Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China

This study systematically evaluated the effects of four thermal processing methods-boiling, steaming, extrusion, and roasting-on the physicochemical properties and in vitro antioxidant activity of black beans. Notably, ash content decreased following boiling and steaming, reaching 45.5 mg·g–1 and 43.5 mg·g–1, respectively, corresponding to reductions of 8.5% and 13.3%. In contrast, extrusion and roasting led to moisture loss, resulting in ash content increases of 3.2% and 6.8%. Among the treatments, boiling significantly increased powder clumping (5.1%), primarily due to elevated moisture content, a value markedly higher than that observed for other methods. Both boiling and steaming diminished brightness, while extrusion deepened colour intensity and enhanced redness. Regarding chemical composition, polyphenol content declined after boiling and steaming (3.8 mg·g–1 and 2.9 mg·g–1, respectively) relative to untreated black bean powder (4.3 mg·g–1). Extrusion, however, elevated polyphenol levels, whereas all heat treatments reduced flavonoid content, with boiling exerting the greatest impact. Antioxidant activity also declined post-processing, with boiling having the most pronounced effect on 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) radical scavenging and steaming most affecting hydroxyl radical elimination. Extrusion emerged as the optimal processing method for black beans, and superior retention of bioactive compounds, enhanced antioxidant capacity, improved physicochemical properties (lower clumping, stable colour parameters). These findings could provide actionable insights for food industries to select processing methods that maximise nutritional value and functional properties of black bean products.

Keywords: Glycine max (L.) Merr.; heat processing method; extrusion

Received: July 15, 2024; Revised: May 29, 2025; Accepted: May 30, 2025; Prepublished online: August 1, 2025; Published: August 31, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ji X, Zhang S, Du X, Zhang Y, Yao Y, Zhu Y. Effect of different heat treatments on physicochemical properties and antioxidant characteristics of black beans. Czech J. Food Sci. 2025;43(4):300-310. doi: 10.17221/144/2024-CJFS.
Download citation

References

  1. Abera S., Yohannes W., Chandravanshi B.S. (2023): Effect of processing methods on antinutritional factors (oxalate, phytate, and tannin) and their interaction with minerals (calcium, iron, and zinc) in red, white, and black kidney beans. International Journal of Analytical Chemistry, 2023: 6762027. Go to original source... Go to PubMed...
  2. Alves P.L.S., Berrios J.D.J., Pan J., Yokoyama W.H. (2020): Black, pinto and white beans lower hepatic lipids in hamsters fed high fat diets by excretion of bile acids. Food Production, Processing and Nutrition, 2: 25. Go to original source...
  3. Alpos M., Leong S.Y., Oey I. (2021): Combined effects of calcium addition and thermal processing on the texture and in vitro digestibility of starch and protein of black beans (Phaseolus vulgaris). Foods, 10: 1368. Go to original source... Go to PubMed...
  4. Aregueta-Robles U., Fajardo-Ramirez O.R., Villela L., Gutiérrez-Uribe J.A., Hernández-Hernández J., López-Sánchez R.D.C., Scott S.P., Serna-Saldívar S. (2018): Cytotoxic activity of a black bean (Phaseolus vulgaris L.) extract and its flavonoid fraction in both in vitro and in vivo models of lymphoma. Revista De Investigacion Clinica (Clinical and Translational Investigation), 70: 32-39. Go to original source... Go to PubMed...
  5. Barreto N.M.B., Pimenta N.G., Braz B.F., Freire A.S., Santelli R.E., Oliveira A.C., Bastos L.H.P., Cardoso M.H.W.M., Monteiro M., Diogenes M.E.L., Perrone D. (2021): Organic black beans (Phaseolus vulgaris L.) from Rio de Janeiro State, Brazil, present more phenolic compounds and better nutritional profile than nonorganic. Foods, 10: 900. Go to original source... Go to PubMed...
  6. Borges-Martínez E., Gallardo-Velázquez T., Cardador-Martínez A., Moguel-Concha D., Osorio-Revilla, G., Ruiz-Ruiz J.C., Martínez C.J. (2022): Phenolic compounds profile and antioxidant activity of pea (Pisum sativum L.) and black bean (Phaseolus vulgaris L.) sprouts. Food Science and Technology, 42: e45920. Go to original source...
  7. Carter C.E., Manthey F.A. (2019): Seed treatments affect milling properties and flour quality of black beans (Phaseolus vulgaris L.). Cereal Chemistry, 96: 689-697. Go to original source...
  8. Chen Y., Zheng Z., Ai Z., Zhang Y., Tan C.P., Liu Y. (2022): Exploring the antioxidant and structural properties of black bean protein hydrolysate and its peptide fractions. Frontiers in Nutrition, 9: 884537. Go to original source... Go to PubMed...
  9. Choudhary D., Andreani G.A., Mahmood S., Wen X., Patel M.S., Rideout T.C. (2024): Postnatal consumption of black bean powder protects against obesity and dyslipidemia in male adult rat offspring from obese pregnancies. Nutrients, 16: 1029. Go to original source... Go to PubMed...
  10. Damian-Medina K., Milenkovic D., Salinas-Moreno Y., Corral-Jara K.F., Figueroa-Yáñez L., Marino-Marmolejo E., Lugo-Cervantes E. (2022): Anthocyanin-rich extract from black beans exerts anti-diabetic effects in rats through a multi-genomic mode of action in adipose tissue. Frontiers in Nutrition, 9: 1019259. Go to original source... Go to PubMed...
  11. Evangelho J.A., Berrios J.J., Pinto V.Z., Antunes M.D., Vanier N.L., Zavareze, E.R. (2016): Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates. Food Science and Technology, 36: 23-27. Go to original source...
  12. Evangelho J.A., Vanier N.L., Pinto V.Z., Berrios J.J., Dias A.R.G., Zavareze E.R. (2017): Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties. Food Chemistry, 214: 460-467. Go to original source... Go to PubMed...
  13. Felix J.W., Sánchez-Chávez E., De-la-Cruz-Lázaro E., Márquez-Quiroz C. (2020): Edaphic and foliar biofortification of common black bean (Phaseolus vulgaris L.) with iron. Legume Research, 44: 192-196. Go to original source...
  14. Feitosa S., Greiner R., Meinhardt A.K., Müller A., Almeida D.T., Posten C. (2018): Effect of traditional household processes on iron, zinc and copper bioaccessibility in black bean (Phaseolus vulgaris L.). Foods, 7: 123. Go to original source... Go to PubMed...
  15. Fonseca-Hernandez D., Lugo-Cervantes E.D., Escobedo-Reyes A., Mojica L. (2021): Black bean (Phaseolus vulgaris L.) polyphenolic extract exerts antioxidant and antiaging potential. Molecules. 26: 6716. Go to original source... Go to PubMed...
  16. Guo Y., Wassgren C., Ketterhagen W., Hancock B., Curtis J. (2018): Discrete element simulation studies of angles of repose and shear flow of wet, flexible fibers. Soft Matter, 14: 2923-2937. Go to original source... Go to PubMed...
  17. Hernandez-Velazquez I., Sanchez-Tapia M., Ordaz-Nava G., Torres N., Tovar A.R., Galvez A. (2020): Black bean protein concentrate ameliorates hepatic steatosis by decreasing lipogenesis and increasing fatty acid oxidation in rats fed a high fat-sucrose diet. Food & Function, 11: 10341-10350. Go to original source... Go to PubMed...
  18. Hong J.Y., Shin S.R., Kong H.J., Choi E.M., Woo S.C., Lee M.H., Yang K.M. (2014): Antioxidant activity of extracts from soybean and small black bean. Food Science and Preservation, 21: 404-411. Go to original source...
  19. Hostetler G.L., Riedl K.M., Schwartz S.J. (2013): Effects of food formulation and thermal processing on flavones in celery and chamomile. Food Chemistry, 141: 1406-1411. Go to original source... Go to PubMed...
  20. Ismaiel S.A., Salama H.M. (2021): Allelopathic effects of black nightshade (Solanum Nigrum L.) on germination, growth and yield of broad bean (Vicia Faba L.) and common bean (Phaseolus Vulgaris L.). Applied Ecology and Environmental Research, 19: 3431-3441. Go to original source...
  21. Jeong E.W., Park S.Y., Yang Y.S., Baek Y.J., Yun D.M., Kim H.J., Go G.W., Lee H.G. (2021): Black soybean and Adzuki bean extracts lower blood pressure by modulating the renin-angiotensin system in spontaneously hypertensive rats. Foods, 10: 1571. Go to original source... Go to PubMed...
  22. Jin H., Zhao Q., Feng H., Wang Y., Wang J., Liu Y., Han D., Xu J. (2019): Changes on the structural and physicochemical properties of conjugates prepared by the Maillard reaction of black bean protein isolates and glucose with ultrasound pretreatment. Polymers, 11: 848. Go to original source... Go to PubMed...
  23. Kim A.J. (2016): The inhibitory effects of roasted black bean (Rhynchosia nulubilis) extracts on RANKL-mediated RAW264.7 cells differentiation. Food Science and Biotechnology, 25: 839-846. Go to original source... Go to PubMed...
  24. Kumar S., Sharma V.K., Yadav S., Dey S. (2017): Antiproliferative and apoptotic effects of black turtle bean extracts on human breast cancer cell line through extrinsic and intrinsic pathway. Chemistry Central Journal, 11: 56. Go to original source... Go to PubMed...
  25. Lee M., Lee K.G. (2023): Effect of ultrasound and microwave treatment on the level of volatile compounds, total polyphenols, total flavonoids, and isoflavones in soymilk processed with black soybean (Glycine max (L.) Merr.). Ultrasonics Sonochemistry, 99: 106579. Go to original source... Go to PubMed...
  26. Li L., Luo C., Zheng X. (2021): Purification of anthocyanins derived from black kidney bean (Phaseolus vulgaris L.) by a simulated moving bed. Journal of Chemistry, 2021: 580756. Go to original source...
  27. Li S., Chen J., Hao X., Ji X., Zhu Y., Chen X., Yao Y. (2024): A systematic review of black soybean (Glycine max (L.) Merr.): Nutritional composition, bioactive compounds, health benefits, and processing to application. Food Frontiers, 5: 1188-1211. Go to original source...
  28. Mariscal-Moreno R.M., Chuck-Hernández C., Figueroa-Cárdenas J.D., Serna-Saldivar S.O. (2021): Physicochemical and nutritional evaluation of bread incorporated with Ayocote bean (Phaseolus coccineus) and black bean (Phaseolus vulgaris). Processes, 9: 1782. Go to original source...
  29. Machado-Velarde L.X., Davila-Vega J.P., Gutierrez-Uribe J., Espinosa-Ramírez J., Martínez-Avila M., Guajardo-Flores D., Chuck-Hernández C. (2023): Black bean hulls as a byproduct of an extraction process to enhance nutraceutical and glycemic-related properties of nixtamalized maize tostadas. Foods, 12: 1915. Go to original source... Go to PubMed...
  30. Melini F., Lisciani S., Camilli E., Marconi S., Melini V. (2023): Effect of cooking on phenolic compound content and in vitro bioaccessibility in sustainable foods: a case study on black beans. Sustainability, 16: 279. Go to original source...
  31. Mitharwal S., Saini A., Chauhan K., Taneja N.K., Oberoi H.S. (2024): Unveiling the nutrient-wealth of black soybean: A holistic review of its bioactive compounds and health implications. Comprehensive Reviews in Food Science and Food Safety, 23: e70001. Go to original source... Go to PubMed...
  32. Neder-Suarez D., Lardizabal-Gutierrez D., Zazueta-Morales J.J., Meléndez-Pizarro C.O., Delgado-Nieblas C.I., Wong B.R., Gutiérrez-Méndez N., Hernández-Ochoa L.R., Quintero-Ramos A. (2021): Anthocyanins and functional compounds change in a third-generation snacks prepared using extruded blue maize, black bean, and chard: An optimization. Antioxidants, 10: 1368. Go to original source... Go to PubMed...
  33. Park H.S., Shin S.R., Hong J.Y., Yang K.M. (2013): Comparison of the antioxidant activities of small-black-bean-Chungkukjang-added black food and soybean Chungkukjang extracts. Journal of Food Preservation, 20: 735-743. Go to original source...
  34. Qubbaj T., Samara R. (2022): Efficacy of three entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae and Lecanicillium lecanii isolates against black bean aphid, Aphis fabae (Scop.) (Hemiptera: Aphididae) on faba bean (Vicia faba L.). Legume Research, 45: 1572-1579. Go to original source...
  35. Rockenbach R., Ávila B., Bragança G., Monks J., Peres W., Gularte M., Elias M. (2018): Effect of different hydration temperatures on the sensory, nutritional, and instrumental profile of black beans. Revista Chilena de Nutrición, 45: 144-152. Go to original source...
  36. Rosa-Millán J., Heredia-Olea E., Perez-Carrillo E., Guajardo-Flores D., Serna-Saldívar S. (2019): Effect of decortication, germination and extrusion on physicochemical and in vitro protein and starch digestion characteristics of black beans (Phaseolus vulgaris L.). LWT - Food Science and Technology, 102: 330-337. Go to original source...
  37. Ruiz-Armenta X.A., Zazueta-Morales J.J., Delgado-Nieblas C.I., Carrillo-López A., Aguilar-Palazuelos E., Camacho-Hernández I.L. (2019): Effect of the extrusion process and expansion by microwave heating on physicochemical, phytochemical, and antioxidant properties during the production of indirectly expanded snack foods. Journal of Food Processing and Preservation, 43: e14261. Go to original source...
  38. Sanchez-Tapia M., Hernandez-Velazquez I., Pichardo-Ontiveros E., Granados-Portillo O., Gálvez A., Tovar A.R., Torres N. (2020): Consumption of cooked black beans stimulates a cluster of some clostridia class bacteria decreasing inflammatory response and improving insulin sensitivity. Nutrients, 12: 1182. Go to original source... Go to PubMed...
  39. Saldivar X., Wang Y.J., Chen P., Hou A. (2011): Changes in chemical composition during soybean seed development. Food Chemistry, 124: 1369-1375. Go to original source...
  40. Sun M., Li D., Hua M., Miao X., Su Y., Chi Y., Li Y., Sun R., Niu H., Wang J. (2022): Black bean husk and black rice anthocyanin extracts modulated gut microbiota and serum metabolites for improvement in type 2 diabetic rats. Food and Function, 13: 7377-7391. Go to original source... Go to PubMed...
  41. Teixeira-Guedes C., Sanchez-Moya T., Pereira-Wilson C., Ros-Berruezo G., López-Nicolás R. (2020): In vitro modulation of gut microbiota and metabolism by cooked cowpea and black bean. Foods, 9: 861. Go to original source... Go to PubMed...
  42. Wang K., Gao Y., Zhao J., Wu Y., Sun J., Niu G., Zuo F., Zheng X. (2022): Effects of in vitro digestion on protein degradation, phenolic compound release, and bioactivity of black bean tempeh. Frontiers in Nutrition, 9: 1017765. Go to original source... Go to PubMed...
  43. Wu T., Sheng Y.N., Tian Y., Yu M., Bai L., Wang C.Y. (2023): Exploring the effect of boiling processing on the metabolic components of black beans through in vitro simulated digestion. LWT-Food Science and Technology, 184: 114987. Go to original source...
  44. Xue Z., Wang C., Zhai L., Yu W., Chang H., Kou X., Zhou F. (2016): Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech Journal of Food Sciences, 34: 68-78. Go to original source...
  45. Yamamoto M., Yoshioka Y., Kitakaze T., Yamashita Y., Ashida H. (2022): Preventive effects of black soybean polyphenols on non-alcoholic fatty liver disease in three different mouse models. Food & Function, 13: 1000-1014. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.