Czech J. Food Sci., 2025, 43(4):283-290 | DOI: 10.17221/127/2024-CJFS

Evaluation of cadmium accumulation in pink oyster mushrooms cultivated on the cadmium contaminated substrates and health risk analysisOriginal Paper

Senad Murtić1, Ćerima Zahirović Sinanović2, Josip Jurković3, Mirza Tvica4, Adnan Hadžić4, Dženeta Fazlić5, Amina Šerbo1
1 Department of Plant Physiology, Faculty of Agriculture and Food Sciences, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
2 Department of Vegetable Crops, Faculty of Agriculture and Food Sciences, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
3 Department of Chemistry, Faculty of Agriculture and Food Sciences, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
4 Department of Soil Science, Faculty of Agriculture and Food Sciences, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
5 Department of Food Technology, Faculty of Agriculture and Food Sciences, University of Sarajevo, Sarajevo, Bosnia and Herzegovina

Pink oyster mushrooms are rich in protein, dietary fibre, vitamins and minerals, making them a great addition to any diet. However, pink oyster mushrooms have the ability to accumulate high concentrations of heavy metals, some of which, such as cadmium, can cause adverse effects on human health. The aim of this study was to evaluate the ability of pink oyster mushrooms to absorb Cd from substrates contaminated with Cd and to assess the human health risks associated with the consumption of these mushrooms. An experiment was carried out in a completely randomised design and included four treatments (four Cd contamination levels i.e. 0, 20, 50 and 100 mg·kg–1) with three replications. Cd accumulation in mushrooms increased with increasing Cd content in substrates and ranged from 1.8 mg·kg–1 (non-contaminated substrate) to 23.8 mg·kg–1 of dry mass (substrate contaminated with 100 mg·kg–1 of Cd). On the other hand, total mushroom yield showed a decreasing trend with increasing Cd levels in substrates. The results of the present study suggest that pink oyster mushrooms possess the capability to absorb Cd from the substrate in which they grow. The obtained results for target hazard quotient (THQ) of Cd point to the conclusion that the consumption of mushrooms cultivated on the Cd-contaminated substrates could produce negative health effects.

Keywords: consumption; edible mushrooms; heavy metals; toxicity

Received: June 25, 2024; Revised: May 21, 2025; Accepted: June 30, 2025; Prepublished online: August 26, 2025; Published: August 31, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Murtić S, Zahirović Sinanović Ć, Jurković J, Tvica M, Hadžić A, Fazlić D, Šerbo A. Evaluation of cadmium accumulation in pink oyster mushrooms cultivated on the cadmium contaminated substrates and health risk analysis. Czech J. Food Sci. 2025;43(4):283-290. doi: 10.17221/127/2024-CJFS.
Download citation

References

  1. Ab Rhaman S.M.S., Naher L., Siddiquee S. (2021): Mushroom quality related with various substrates' bioaccumulation and translocation of heavy metals. Journal of Fungi, 8: 42. Go to original source...
  2. Alejandro S., Höller S. Meier B., Peiter E. (2020): Manganese in Plants: From Acquisition to Subcellular Allocation. Frontiers in Plant Science, 11: 300. Go to original source...
  3. Andronikov A.V., Andronikova, I.E., Martinkova E., Sebek O., Stepanova M. (2023): Translocation of elements and fractionation of Mg, Cu, Zn, and Cd stable isotopes in a penny bun mushroom (Boletus edulis) from western Czech Republic. Environmental Science and Pollution Research, 30: 49339-49353. Go to original source... Go to PubMed...
  4. Bazzicalupo A.L., Ruytinx J., Ke Y.H., Coninx L., Colpaert J.V., Nguyen N.H., Vilgalys R., Branco S. (2020): Fungal heavy metal adaptation through single nucleotide polymorphisms and copy-number variation. Molecular Ecology, 29: 4157-4169. Go to original source...
  5. Charkiewicz A.E., Omeljaniuk W.J., Nowak K., Garley M., Nikliński J. (2023): Cadmium toxicity and health effects - A brief summary. Molecules, 28: 6620. Go to original source...
  6. Chowdhury G., Sharma R., Sarkar U. (2024): Cultural studies and yield attributes of pink oyster mushroom (Pleurotus djamor) in West Bengal. Bioresources, 19: 1696-1706. Go to original source...
  7. Demirbaş A. (2002): Metal ion uptake by mushrooms from natural and artificially enriched soils. Food Chemistry, 78: 89-93. Go to original source...
  8. Dowlati M., Sobhi H.R., Esrafili A., FarzadKia M., Yeganeh M. (2021): Heavy metals content in edible mushrooms: A systematic review, meta-analysis and health risk assessment. Trends in Food Science & Technology, 109: 527-535. Go to original source...
  9. Egnér H., Riehm H., Domingo W.R. (1960): Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungliga Lantbrukshögskolans Annaler, 26: 199-215. (in German)
  10. Falandysz J., Frankowska A. (2007): Some metallic elements and their bioconcentration factors in king bolete [Boletus edulis] collected in the Swietokrzyska forest (Niektore pierwiastki metaliczne i ich wspolczynniki biokoncentracji w borowiku szlachetnym [Boletus edulis] z Puszczy Swietokrzyskiej). Bromatologia i Chemia Toksykologiczna, 40: 257. (in Polish)
  11. Genchi G., Sinicropi M.S., Lauria G., Carocci A., Catalano A. (2020): The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17: 3782. Go to original source...
  12. Golian M., Hegedűsová A., Mezeyová I., Chlebová Z., Hegedűs O., Urminská D., Vollmannová A., Chlebo P. (2021): Accumulation of selected metal elements in fruiting bodies of oyster mushroom. Foods, 11: 76. Go to original source...
  13. Gupta R., Doshi A., Khokhar M.K., Kumar J., Deewan P. (2021): Uptake and bioremediation of heavy metals through cultivated mushroom (Agaricus bisporus) and growth potential in contaminated substrates. The Pharma Innovation Journal, 10: 988-993.
  14. Han R., Zhou B., Huang Y., Lu X., Li S., Li N. (2020): Bibliometric overview of research trends on heavy metal health risks and impacts in 1989-2018. Journal of Cleaner Production, 276: 123249. Go to original source...
  15. Jia F., Wang Y., Gong Z., Cui W., Wang Y., Wang W. (2016): Study on quality and safety risk factors of edible fungi and preventive measures: Take China as an example. Open Access Library Journal, 3: 1-10. Go to original source...
  16. Kapahi M., Sachdeva S. (2017): Mycoremediation potential of Pleurotus species for heavy metals: A review. Bioresources and Bioprocessing, 4: 32. Go to original source... Go to PubMed...
  17. Lisjak M., Špoljarević M., Agić D., Andrić L. (2009): Practicum-Plant Physiology. First Edit. Faculty of Agriculture in Osijek: 24-28.
  18. Mirończuk-Chodakowska I., Socha K., Zujko M.E., Terlikowska K.M., Borawska M.H., Witkowska A.M. (2019): Copper, Manganese, Selenium and Zinc in wild-growing edible mushrooms from the eastern territory of 'Green lungs of Poland': Nutritional and toxicological implications. International Journal of Environmental Research and Public Health, 16: 3614. Go to original source...
  19. Mleczek M., Budka A., Siwulski M., Mleczek P., Budzyńska S., Proch J., Gąsecka M., Niedzielski P., Rzymski P. (2021): A comparison of toxic and essential elements in edible wild and cultivated mushroom species. European Food Research and Technology, 247: 1249-1262. Go to original source...
  20. Mubeen S., Ni W., He C., Yang Z. (2023): Agricultural strategies to reduce cadmium accumulation in crops for food safety. Agriculture, 13: 471. Go to original source...
  21. Muszyńska B., Rojowski J., Lazarz M., Kala K., Dobosz K., Opoka W. (2018): The accumulation and release of Cd and Pb from edible mushrooms and their biomass. Polish Journal of Environmental Studies, 227: 223-230. Go to original source...
  22. Naija A., Yalcin H.C. (2023): Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicology Reports, 10: 498-508. Go to original source...
  23. OG FBiH (2009): Official Gazette of Federation of Bosnia and Herzegovina No 72/09 - Rulebook on determination of allowable quantities of harmful and hazardous substances in soils of Federation of Bosnia and Herzegovina and methods for their testing. Sarajevo, Bosnia and Herzegovina: 14-16.
  24. Podlasińska J., Proskura N., Szymańska A. (2015): Content of Pb, Hg, Zn, Mn, Cu and Fe in macrofungi collected from Wkrzanska Forest in Northwestern Poland. Polish Journal of Environmental Studies, 24: 651-656. Go to original source...
  25. Qiu J., Yao F., Fan H., Wei C., Song Z. (2024): Risk assessment of metals in black fungus and culture substrates based on Monte Carlo simulation. Applied Sciences, 14: 1082. Go to original source...
  26. Raman J., Lakshmanan H., Jang K.-Y., Oh M., Oh Y.L., Im J.-H. (2020): Nutritional composition and antioxidant activity of pink oyster mushroom (Pleurotus djamor var. roseus) grown on a paddy straw substrate. Journal of Mushrooms, 18: 189-200.
  27. Širić I., Kumar P., Eid E.M., Bachheti A., Kos I., Bedeković D., Mioč B., Humar M. (2022): Occurrence and health risk assessment of cadmium accumulation in three Tricholoma mushroom species collected from wild habitats of central and coastal Croatia. Journal of Fungi, 8: 685. Go to original source...
  28. Sácký J., Chaloupecká A., Kaňa A., Šantrůček J., Borovička J., Leonhardt T., Kotrba P. (2022): Intracellular sequestration of cadmium and zinc in ectomycorrhizal fungus Amanita muscaria (Agaricales, Amanitaceae) and characterization of its metallothionein gene. Fungal Genetics and Biology, 162: 103717. Go to original source...
  29. Stamets P., Chilton J.S. (1983): The Mushroom Cultivator. A Practical Guide to Growing Mushrooms at Home. Olympia, USA, Agaricon Press: 41-57.
  30. Stoknes K., Scholwin F., Jasinska A., Wojciechowska E., Mleczek M., Hanc A., Niedzielski P. (2019): Cadmium mobility in a circular food-to-waste-to-food system and the use of a cultivated mushroom (Agaricus subrufescens) as a remediation agent. Journal of Environmental Management, 245: 48-54. Go to original source...
  31. Subašić M., Šamec D., Selović A., Karalija E. (2022): Phytoremediation of cadmium polluted soils: Current status and approaches for enhancing. Soil Systems, 6: 3. Go to original source...
  32. Thongsook T., Kongbangkerd T. (2011): Influence of calcium and silicon supplementation into Pleurotus ostreatus substrates on quality of fresh and canned mushrooms. Food Science and Technology International, 17: 351-365. Go to original source... Go to PubMed...
  33. USEPA (United States Environmental Protection Agency) (2011): USEPA Regional Screening Level (RSL) Summary Table: November 2011. Available at: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed May 20, 2024)
  34. WHO (1989): Toxicological evaluation of certain food additives and contaminants. In: Report of the thirty-third meeting of joint FAO/WHO expert committee on food additives, Geneva, Switzerland, March 21-30, 1988:43-65.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.