Czech J. Food Sci., 2025, 43(2):90-104 | DOI: 10.17221/33/2025-CJFS

Crystallinity of starch, food composition, and digestibility of starchReview

Evľen ©árka ORCID...1, Petra Smrčková ORCID...1, Marcela Sluková ORCID...1
1 Department of Carbohydrates and Cereals, University of Chemistry and Technology, Prague, Czech Republic

Starch granules in their native state are insoluble and semi-crystalline. There are three forms of starch/amylopectin in nature: A, B, and C: in cereals (A), tubers and high amylose starches (B), and some varieties of peas and beans (C). Crystallinity and rate of starch hydrolysis depend on the plant species and growing conditions. The changes during food preparation include gelatinisation, the formation of amylose-lipids and amylose-protein complexes, and resistant starch (RS) origin. They are accompanied by changes from crystal to amorphous form and vice versa. Starch in human food is mostly rapidly or slowly digestible. Rapidly digestible starch is formed by gelatinisation, cooking extrusion, breaking down of starch granules, or hydrolysis to maltodextrins. By definition, RS is not digested in the small intestine. This review addresses the influences of biochemical processes in the human body on starch digestibility. It is strongly influenced by the degree of chewing, the activity of α-amylase in the intestine, and transit time through the stomach and small intestine. Resistant starch and endogenous intestinal mucus support the growth of specialist microbes in the large intestine that produce a variety of short-chain fatty acids, causing the perception of satiety, lowering pH, and inhibiting pathogens in the colon.

Keywords: human obesity; reduction of overweight; soluble fibre; plant polyphenols; gluten-free foods; type 2 diabetes mellitus

Received: February 21, 2025; Revised: April 9, 2025; Accepted: April 10, 2025; Prepublished online: April 25, 2025; Published: April 30, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
©árka E, Smrčková P, Sluková M. Crystallinity of starch, food composition, and digestibility of starch. Czech J. Food Sci. 2025;43(2):90-104. doi: 10.17221/33/2025-CJFS.
Download citation

References

  1. Anderson C.D., Hammond R.J., Wilde L.E. (2024): Metrics for weight management success: An examination of the lifestyle score. Health Psychology and Behavioural Medicine, 12: 2296461. Go to original source... Go to PubMed...
  2. Anon (1998): Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert Consultation. FAO Food Nutrition. Paper, 66: 1-140.
  3. Atzler J.J., Crofton E.C., Sahin A.W., Ispiryan L., Gallagher E., Zannini E., Arendt E.K. (2024): Effect of fibre fortification of low FODMAP pasta. International Journal of Food Sciences and Nutrition, 75: 293-305. Go to original source... Go to PubMed...
  4. Augustin M.A., Sanguansri P., Htoon A. (2008): Functional performance of a resistant starch ingredient modified using a microfluidiser. Innovative Food Science and Emerging Technologies, 9: 224-231. Go to original source...
  5. Autio K., Niskanen L., Poutanen K. (2004): Starch in food diabetes and coronary heart disease. In: Arnoldi A. (ed.): Functional Foods, Cardiovascular Disease and Diabetes. Cambridge, Woodhead Publishing: 377-474. Go to original source...
  6. Bakar R.B., Reimann F., Gribble F.M. (2023): The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nature Reviews Gastroenterology & Hepatology, 20: 784-796. Go to original source... Go to PubMed...
  7. Bao J., Atkinson F., Petocz P., Willett W.C., Brand-Miller J.C. (2011): Prediction of postprandial glycemia and insulinemia in lean, young, healthy adults: Glycemic load compared with carbohydrate content alone. The American Journal of Clinical Nutrition, 93: 984-996. Go to original source... Go to PubMed...
  8. Barclay A.W., Augustin L.S.A., Brighenti F., Delport E., Henry C.J., Sievenpiper J.L., Usic K., Yuexin Y., Zurbau A., Wolever T.M.S., Astrup A., Bulló M., Buyken A., Ceriello A., Ellis P.R., Vanginkel M., Kendall C.W.C., La Vecchia A., Livesey G., Poli A., Riccardi G., Sals-Salvadó J., Trichopolou A., Bhaskaran K., Jenkins D.J.A., Willett W.C., Brand-Miller J.C. (2021): Dietary Glycaemic Index Labelling: A Global Perspective. Nutrients 13: 3244. Go to original source... Go to PubMed...
  9. Barrett A., Ndou T., Hughey C.A., Straut C., Howell A., Dai Z., Kaletunc G. (2013): Inhibition of α-amylase and glucoamylase by tannins extracted from cocoa, pomegranates, cranberries, and grapes. Journal of Agricultural and Food Chemistry, 61: 1477-1486. Go to original source... Go to PubMed...
  10. Bender D.A. (2007): Introduction to Nutrition and Metabolism. 4th Ed. Boca Raton, CRC Press Taylor and Francis Group: 75-114.
  11. Blazek J., Copeland L. (2010): Amylolysis of wheat starches. II. Degradation patterns of native starch granules with varying functional properties. Journal of Cereal Science 52: 295-302. Go to original source...
  12. Blazek J., Gilbert E.P. (2010): Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules, 11: 3275-3289. Go to original source... Go to PubMed...
  13. Bodamer O.A., Feillet F., Lane R.E., Lee P.J., Dixon M.A., Halliday D., Leonard J.V. (2002): Utilisation of cornstarch in glycogen storage disease type Ia. European Journal of Gastroenterology & Hepatology, 14: 1251-1256. Go to original source... Go to PubMed...
  14. Bonder M.J., Tigchelaar E.F., Cai X., Trynka G., Cenit M.C., Hrdlickova B., Zhong H., Vatanen T., Gevers D., Wi-jmenga C., Wang Y., Zhernakova A. (2016): The influence of a short-term gluten-free diet on the human gut microbiome. Genome Medicine, 8: 45. Go to original source... Go to PubMed...
  15. Brand J.C., Nicholson P.L., Thorburn A.W., Truswell A.S. (1985): Food processing and the glycemic index. The American Journal of Clinical Nutrition, 42: 1192-1196. Go to original source... Go to PubMed...
  16. Cattivelli A., Zannini M., Conte A., Tagliazucchi D. (2024): Inhibition of starch hydrolysis during in vitro co-digestion of pasta with phenolic compound-rich vegetable foods. Food Bioscience, 61: 10458. Go to original source...
  17. Cecil J.E., Francis J., Read N.W. (1999): Comparison of the effects of a high-fat and high-carbohydrate soup delivered orally and intragastrically on gastric emptying, appetite, and eating behaviour. Physiology and Behaviour, 67: 299-306. Go to original source... Go to PubMed...
  18. Chapman R.W., Sillery J.K., Graham M.M., Saunders D.R. (1985): Absorption of starch by healthy ileostomates: Effect of transit time and of carbohydrate load. The American Journal of Clinical Nutrition, 41: 1244-1248. Go to original source... Go to PubMed...
  19. Chávez-Salazar A., Alvarez-Barreto C.I., Hoyos-Leyva J.D., Bello-Pérez L.A., Castellanos-Galeano F.J. (2022): Drying processes of OSA-modified plantain starch trigger changes in its functional properties and digestibility. LWT-Food Science and Technology, 154: 112846. Go to original source...
  20. Chen B.Y., Guo Z.B., Miao S., Zeng S.X., Jia X.Z., Zhang Y., Zheng B.D. (2018): Preparation and characterisation of lotus seed starch-fatty acid complexes formed by micro fluidization. Journal of Food Engineering, 237: 52-59. Go to original source...
  21. Chung H.J., Shin D.H., Lim S.T. (2008): In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Research International, 41: 579-585. Go to original source...
  22. Chung H.J., Liu Q., Lee L., Wei D. (2011): Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloids, 25: 968-975. Go to original source...
  23. Colonna P., Leloup V., Buléon A. (1992): Limiting factors of starch hydrolysis. European Journal of Clinical Nutrition, 46: 17-32.
  24. Copeland L., Blazek J., Salman H., Tang M.C. (2009): Form and functionality of starch. Food Hydrocolloids, 23: 1527-1534. Go to original source...
  25. Cortés Viguri V., Hernández-Rodríguez L., Lobato Calleros C., Cuevas Bernardino J.C., Hernández Rodríguez B.E., Alvarez Ramirez J., Vernon Carter E.J. (2022): Annatto (Bixa orellana L.), a potential novel starch source: Antioxidant, microstructural, functional, and digestibility properties. Journal of Food Measurement and Characterization,16: 637-651. Go to original source...
  26. Dhital S., Warren F.J., Butterworth P.J., Ellis P.R., Gidley M.J. (2017): Mechanisms of starch digestion by α-amylase - Structural basis for kinetic properties. Critical Reviews in Food Science and Nutrition, 57: 875-892. Go to original source... Go to PubMed...
  27. Du S.K., Jiang H., Ai Y., Jane J.L. (2014): Physicochemical and functional properties of whole legume flour. Carbohydrate Polymers, 108: 308-313. Go to original source...
  28. Edwards C.H., Grundy M.M.L., Grassby T., Vasilopoulou D., Frost G.S. Butterworth P.J., Berry S.E.E., Sanderson J., Ellis P.R. (2015): Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: A randomised controlled trial in healthy ileostomy participants. The American Journal of Clinical Nutrition, 102: 791-800. Go to original source... Go to PubMed...
  29. Eliasson A.C. (ed.) (1996): Carbohydrates in Food. 1st Ed. Boca Raton, CRC Press: 505-553.
  30. Englyst H.N., Anderson V., Cummings J.H. (1983): Starch and non-starch polysaccharides in some cereal foods. Journal of the Science of Food and Agriculture, 34: 1434-1440. Go to original source... Go to PubMed...
  31. Esfahani A., Wong J.M.W., Mirrahimi A., Srichaikul K., Jenkins D.J.A., Kendall C.W.C. (2009): The glycemic index: Physiological significance. Journal of the American College of Nutrition, 28: 439-445. Go to original source... Go to PubMed...
  32. Ezeogu L.I., Duodu K.G., Taylor J.R.N. (2005): Effects of endosperm texture and cooking conditions on the in vitro starch digestibility of sorghum and maize flours. Journal of Cereal Science, 42: 33-44. Go to original source...
  33. Feng C., Jin C., Liu K., Yang Z. (2023): Microbiota-derived short chain fatty acids: Their role and mechanisms in viral infections. Biomedicine & Pharmacotherapy, 160: 114414. Go to original source...
  34. Foster-Powell K., Brand Miller J. (1995): International tables of glycemic index. The American Journal of Clinical Nutrition, 62: 871-893. Go to original source...
  35. Foster-Powell K., Holt S.H.A., Brand-Miller J.C. (2002): International table of glycemic index and glycemic load values. The American Journal of Clinical Nutrition, 76: 5-56. Go to original source... Go to PubMed...
  36. Gałkowska D., Kapusniak K., Juszczak L. (2023): Chemically modified starches as food additives. Molecules, 28: 7543. Go to original source... Go to PubMed...
  37. Gautier T., Fahet N., Tamanai-Shacoori Z., Oliviero N., Blot M., Sauvager A., Burel A., David-Le Gall S., Tomasi S., Blat S., Bousarghin L. (2022): Roseburia intestinalis modulates PYY expression in a new a multicellular model including enteroendocrine cells. Microorganisms, 10: 2263. Go to original source... Go to PubMed...
  38. Gill S.K., Rossi M., Bajka B., Whelan K. (2021): Dietary fibre in gastrointestinal health and disease. Nature Reviews Gastroenterology & Hepatology, 18: 101-116. Go to original source... Go to PubMed...
  39. Golay A., Koellreutter B., Bloise D., Assal J.P., Würsch P. (1992): The effect of muesli or cornflakes at breakfast on carbohydrate metabolism in type 2 diabetic patients. Diabetes Research and Clinical Practice, 15: 135-141. Go to original source... Go to PubMed...
  40. Gong B., Cheng L., Gilbert R.G., Li C. (2019): Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocolloids, 96: 634-643. Go to original source...
  41. Goux A., Breyton A.E., Meynier A., Lambert-Porcheron S., Sothier M., Van Den Berghe L., Brack O., Normand S., Disse E., Laville M., Nazare J.A., Vinoy S. (2020): Design and validation of a diet rich in slowly digestible starch for type 2 diabetic patients for significant improvement in glycemic Profile. Nutrients, 12: 8. Go to original source... Go to PubMed...
  42. Gulati S., Misra A. (2025): Premeal load of macronutrients as an effective nutritional strategy to control postprandial glycemia. Clinical Diabetology. Go to original source...
  43. Han J.A., BeMiller J.N. (2007): Preparation and physical characteristics of slowly digesting modified food starches. Carbohydrate Polymers, 67: 366-374. Go to original source...
  44. Han L., Qiu S., Cao S., Yu Y., Yu S., Liu Y. (2021): Molecular characteristics and physicochemical properties of very small granule starch isolated from Agriophyllum squarrosum seeds. Carbohydrate Polymers, 273: 118583. Go to original source... Go to PubMed...
  45. Han S., Hu Y., Li C., Yu Y., Wang Y., Gu Z., Hao Z., Xiao Y., Liu Y., Liu K., Zheng M., Du Y., Zhou Y., Yu Z. (2024): Exploring the formation mechanism of resistant starch (RS3) prepared from high amylose maize starch by hydrothermal-alkali combined with ultrasonic treatment. International Journal of Biological Macromolecules, 258: 128938. Go to original source... Go to PubMed...
  46. Hoover H., Manuel H. (1996): Effect of heat-moisture treatment on the structure and physicochemical properties of legume starches. Food Research International, 29: 731-750. Go to original source...
  47. Johnson S.K., Thomas S.J., Hall R.S. (2005): Palatability and glucose, insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast. European Journal of Clinical Nutrition, 59: 169-176. Go to original source... Go to PubMed...
  48. Kadyan S., Park G., Hochuli N., Miller K., Wang B., Nagpal R. (2024): Resistant starches from dietary pulses improve neuro-cognitive health via gut-microbiome-brain axis in aged mice. Frontiers in Nutrition, 11: 1322201. Go to original source... Go to PubMed...
  49. Kan L., Capuano E., Fogliano V., Oliviero T., Verkerk R. (2020): Tea polyphenols as a strategy to control starch digestion in bread: The effects of polyphenol type and gluten. Food & Function, 11: 5933-5943. Go to original source... Go to PubMed...
  50. Kellett G.L., Brot-Laroche E. (2005): Apical GLUT2: A major path-way of intestinal sugar absorption. Diabetes, 54: 3056-3062. Go to original source... Go to PubMed...
  51. Kraithong S., Wang S., Junejo S.A., Fu X., Theppawong A., Zhang B., Huang Q. (2022): Type 1 resistant starch: Nutritional properties and industry applications. Food Hydrocolloids, 125: 107369. Go to original source...
  52. Lachowicz S., Oszmiański J., Rapak A., Ochmian I. (2020): Profile and content of phenolic compounds in leaves, flowers, roots, and stalks of Sanguisorba officinalis L. determined with the LC-DAD-ESI-QTOF-MS/MS analysis and their in vitro antioxidant, antidiabetic, antiproliferative potency. Pharmaceuticals, 13: 191. Go to original source... Go to PubMed...
  53. Lamichhane S., Yde C.C., Forssten S., Ouwehand A.C., Saarinen M., Jensen H.M., Gibson G.R., Rastall R., Fava F., Bertram H.C. (2014): Impact of dietary polydextrose fibre on the human gut metabolome. Journal of Agricultural and Food Chemistry, 62: 9944-9951. Go to original source... Go to PubMed...
  54. Le D.T., Kumar G., Williamson G., Devkota L., Dhital S.L. (2024): Molecular interactions between polyphenols and porcine α-amylase: An inhibition study on starch granules probed by kinetic, spectroscopic, calorimetric and in silico techniques. Food Hydrocolloids, 151: 109821. Go to original source...
  55. Le François P. (1989): In vitro availability of starch in cereal products. Journal of the Science of Food and Agriculture, 49: 499-501. Go to original source...
  56. Lehmann U., Robin F. (2007): Slowly digestible starch - Its structure and health implications: A review. Trends in Food Science & Technology, 18: 346-355. Go to original source...
  57. Li C., Hu Y.M., Li S.N., Yi X.E., Shao S.B., Yu W.W., Li E.P. (2023): Biological factors controlling starch digestibility in human digestive system. Food Science and Human Wellness, 12: 351-358. Go to original source...
  58. Lin L., Guo D., Huang J., Zhang X., Zhang L., Wei C. (2016): Molecular structure and enzymatic hydrolysis properties of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocolloids, 58: 246-254. Go to original source...
  59. Lindeboom N., Chang P.R., Tyler R.T. (2004): Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch-Stärke, 56: 89-99. Go to original source...
  60. Liu S., Zhang C., Guo S., Fang Y., Wang H., Chang X. (2023): Insights into the in vitro digestion, antioxidant, and antibacterial properties of hawthorn polyphenol nanoparticles. LWT-Food Science and Technology, 182: 114804. Go to original source...
  61. Liu Z., Luo S., Liu C., Hu X. (2024): Tannic acid delaying metabolism of resistant starch by gut microbiota during in vitro uman fecal fermentation. Food Chemistry, 440: 138261. Go to original source... Go to PubMed...
  62. Ludwig D.S. (2000): Dietary glycemic index and obesity. Journal of Nutrition, 130: 280-283. Go to original source... Go to PubMed...
  63. Mahajan P., Bera M.B., Panesar P.S. (2022): Structural, functional, textural characterisation and in vitro digestibility of underutilised Kutki millet (Panicum sumatrense) starch. LWT - Food Science and Technology, 154: 112831. Go to original source...
  64. Mann J.I., Cummings J.H. (2009): Possible implications for health of the different definitions of dietary fibre. Nutrition, Metabolism and Cardiovascular Diseases, 19: 226-229. Go to original source... Go to PubMed...
  65. McClements D.J. (2021): Food hydrocolloids: Application as functional ingredients to control lipid digestion and bioavailability. Food Hydrocolloids, 111: 106404. Go to original source...
  66. Monsierra L., Mansilla P.S., Pérez G.T. (2024): Whole flour of purple maize as a functional ingredient of gluten-free bread: Effect of in vitro digestion on starch and bioaccessibility of bioactive compounds. Foods, 13: 194. Go to original source... Go to PubMed...
  67. Nakanishi R., Tanaka M., un Nisa B., Shimizu S., Hirabayashi T., Tanaka M., Maeshige N., Roy R.R., Fujino H. (2023): Alternating current electromagnetic field exposure lessens intramyocellular lipid accumulation due to high-fat feeding via enhanced lipid metabolism in mice. Plos One, 180: e0289086. Go to original source... Go to PubMed...
  68. Narayanamoorthy S., Zhang C., Xu Z., Ma M., Sui Z., Li K., Corke H. (2022): Genetic diversity and inter-relationships of common bean (Phaseolus vulgaris L.) starch traits. Starch-Stärke 74: 2100189. Go to original source...
  69. Niba L.L. (2003): Processing effects on susceptibility of starch to digestion in some dietary starch sources. International Journal of Food Sciences and Nutrition, 54: 97-109. Go to original source...
  70. Normand S., Khalfallah Y., Louche-Pellissier C., Pachiaudi C., Antoine J.M., Blanc S., Desage M., Riou J.P., Laville M. (2001): Influence of dietary fat on postprandial glucose metabolism (exogenous and endogenous) using intrinsically 13C-enriched durum wheat. British Journal of Nutrition, 86: 3-11. Go to original source... Go to PubMed...
  71. Norul Nazilah A., Tin W.W. (2020): Starch as oral colon-specific nano- and microparticulate drug carriers. In: AlMaadeed M.A.A., Ponnamma D., Carignano M.A. (eds.): Polymer Science and Innovative Applications. Materials, Techniques, and Future Development. 1st Ed., Amsterdam, Elsevier: 287-330. Go to original source...
  72. Parada J., Aguilera J. M. (2009): In vitro digestibility and glycemic response of potato starch is related to granule size and degree of gelatinisation. Journal of Food Science, 74: 34-38. Go to original source... Go to PubMed...
  73. Polesi L., Silveira Sarmento S. (2011): Structural and physicochemical characterisation of RS prepared using hydrolysis and heat treatments of chickpea starch. Starch-Stärke, 63: 226-235. Go to original source...
  74. Puncha-arnon S., Puttanlek C., Rungsardthong V., Pathipanawat W., Uttapap D. (2007): Changes in physicochemical properties and morphology of canna starches during rhizomal development. Carbohydrate Polymers, 70: 206-217. Go to original source...
  75. Qi X., Tester R.F. (2016): Effect of native starch granule size on susceptibility to amylase hydrolysis. Starch-Stärke, 68: 807-810. Go to original source...
  76. Qi X., Al-Ghazzewi F.H., Tester R.F. (2018): Dietary fibre, gastric emptying, and carbohydrate digestion: A mini-review. Starch-Stärke, 70: 1700346. Go to original source...
  77. Sankhon A., Wang L., Yao W., Amadou I., Wang H., Qian H., Sangare M. (2013): Mechanism of the formation, properties and molecular structure of slowly digestible starch from the African locust bean Parkia biglobosa collected from Conakry, Guinea. Asian Journal of Chemistry, 25: 7277-7282. Go to original source...
  78. ©árka E., Maixner J., Weider M., Smrčková P., Bubník Z. (2011): Shape and crystallinity of potato starch granules after wet ultrafine grinding. In: Proceedings of the 7th International Conference on Polysaccharides-Glycoscience, Prague, Czech Republic, Nov 2-4, 2011: 177-181.
  79. ©árka E., Sinica A., Smrčková P., Sluková M. (2023): Non-traditional starches, their properties, and applications. Foods, 12: 3794. Go to original source... Go to PubMed...
  80. Serin S., Sayar S. (2023): In vitro digestibility, glycaemic index and bile acid-binding capacity of foods containing different types of resistant starch in comparison with the commercial resistant starches. Quality Assurance and Safety of Crops & Foods, 15: 68-76. Go to original source...
  81. Shahidi F., Chandrasekar A. (2017): Interaction of phenolics and their association with dietary fibre. In: Hosseinian F., Oomah B.D., Campos-Vega R. (eds.): Dietary Fiber Functionality in Food and Nutraceuticals. From Plant to Gut. 1st Ed. USA, Wiley Online Library: 21-44. Go to original source...
  82. Sharma H.K., Panesar P.S. (2018): Technologies in Food Processing. 1st Ed. Oakville, Apple Academic Press: 84. Go to original source...
  83. Shi N., Narciso J.O., Gou X., Brennan M.A., Zeng X.A., Brennan C.S. (2017): Manipulation of antioxidant and glycaemic properties of extruded rice based breakfast cereal products using pomelo fruit by-product material. Quality Assurance and Safety of Crops & Foods, 9: 489-495. Go to original source...
  84. Sim L., Quezada-Calvillo R., Sterchi E.E., Nichols B.L., Rose D.R. (2008): Human intestinal maltase-glucoamylase: Crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. Journal of Molecular Biology, 375: 782-792. Go to original source... Go to PubMed...
  85. Sissons M., Cutillo S., Egan N., Farahnaky A., Gadaleta A. (2022): Influence of some spaghetti processing variables on technological attributes and the in vitro digestion of starch. Foods, 11: 3650. Go to original source... Go to PubMed...
  86. Skřivan P., Chrpová D., Klitschová B., ©vec I., Sluková M. (2023): Buckwheat flour (Fagopyrum esculentum Moench) - A contemporary view on the problems of its production for human nutrition. Foods, 12: 3055. Go to original source... Go to PubMed...
  87. Sluijs I., van der Schouw Y.T., van der A Daphne L., Spijkerman A.M., Hu F.B, Grobbee D.E., Beulens J.W. (2010): Carbohydrate quantity and quality and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) study. The American Journal of Clinical Nutrition, 92: 905-911. Go to original source... Go to PubMed...
  88. Soral-Smietana M., Wronkowska M., Amarowicz R. (2001): Health-promoting function of wheat or potato resistant starch preparations obtained by physico-biochemical process. In: Barsby T.L., Donald A.M., Frazier P.J. (eds.): Starch. Advances in Structure and Function. 1st Ed. Cambridge, The Royal Society of Chemistry: 116-128. Go to original source...
  89. Stryer L. (1995): Biochemistry. 4th Ed. New York, W.H. Freeman and Company: 773-774.
  90. Stuart C. (2024): Share of overweight or obese population in Europe 2022, by country. Available at https://www.statista.com/statistics/1276194/overweight-and-obesity-rate-in-europe/. (accessedJuly 15, 2024)
  91. Suo X., Baggio A., Pellegrini N., Vincenzetti S., Vittadini E. (2024): Effect of shape, gluten, and mastication effort on in vitro starch digestion and the predicted glycemic index of pasta. Food & Function, 15: 419-426. Go to original source... Go to PubMed...
  92. Sylow L., Tokarz V.L., Richter E.A., Klip A. (2021): The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metabolism, 33: 758-780. Go to original source... Go to PubMed...
  93. Teles Lima C., Monteiro dos Santos T., de Andrade Neves N., Lavado-Cruz A., Paucar-Menacho L.M., Silva Clerici M.T.P., et al. (2023): New breakfast cereal developed with sprouted whole ryegrass flour: Evaluation of technological and nutritional parameters. Foods, 12: 3902. Go to original source... Go to PubMed...
  94. Tester R.F., Karkalas J., Qi X. (2004): Starch structure and digestibility enzyme-substrate relationship. World's Poultry Science Journal, 60: 186-195. Go to original source...
  95. Tharakan A., Norton I.T., Fryer P.J., Bakalis S. (2010): Mass transfer and nutrient absorption in a simulated model of small intestine. Journal of Food Science, 75: E339-E346. Go to original source... Go to PubMed...
  96. Tian S., Chu Q., Ma S., Ma H., Song H. (2023): Dietary fibre and its potential role in obesity: A focus on modulating the gut microbiota. Journal of Agricultural and Food Chemistry, 71: 14853-14869. Go to original source... Go to PubMed...
  97. van Aken G.A. (2024): Computer modelling of digestive processes in the alimentary tract and their physiological regulation mechanisms: Closing the gap between digestion models and in vivo behaviour. Frontiers in Nutrition, 11: 1339711. Go to original source... Go to PubMed...
  98. Valdes A.M., Walter J., Segal E., Spector T.D. (2018): Role of the gut microbiota in nutrition and health. BMJ, 361: 36-44. Go to original source... Go to PubMed...
  99. Vasques C.T., Mendes M.P., da Silva D.M.B., Monteiro C.C.F., Monteiro A.R.G. (2022): Characterisation of bamboo (Bambusa tuldoides) culm flour and its use in cookies. Czech Journal of Food Sciences, 40: 345-351. Go to original source...
  100. Vázquez-León L.A., Aparicio-Saguilán A., Martínez-Medinilla R.M., Utrilla-Coello R.G., Torruco-Uco J.G., Carpintero-Tepole V., Páramo-Calderón D.E. (2022): Physicochemical and morphological characterisation of black bean (Phaseolus vulgaris L.) starch and potential application in nano-encapsulation by spray drying. Journal of Food Measurement and Characterization, 16: 547-560. Go to original source...
  101. Wachters-Hagedoorn R.E., Priebe M.G., Vonk R.J. (2004): Analysing starch digestion. In: Eliasson A.C. (ed.): Starch in Food - Structure, Function and Applications. 1st Ed. Boca Raton, CRC Press: 575-589. Go to original source...
  102. Walker A.W., Ince J., Duncan S.H., Webster L.M., Holtrop G., Ze X., Brown D., Stares M.D., Scott P., Bergerat A., Louis P., McIntosh F., Johnstone A.M., Lobley G.E., Parkhill J., Flint H.J. (2011): Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME Journal, 5: 220-230. Go to original source... Go to PubMed...
  103. Wang S.J., Copeland L. (2013): Molecular disassembly of starch granules during gelatinisation and its effect on starch digestibility: A review. Food & Function, 4: 1564-1580. Go to original source... Go to PubMed...
  104. Wang S.J., Li C.L., Copeland L., Niu Q., Wang S. (2015): Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14: 568-585. Go to original source...
  105. Wang K., Vilaplana F., Wu A., Hasjim J., Gilbert R.G. (2019a): The size dependence of the average number of branches in amylose. Carbohydrate Polymers, 223: 115134. Go to original source... Go to PubMed...
  106. Wang T., Zhang J., He H., Zhang X., Zhou T., Wang, et al. (2019b): Tailoring digestibility of starches by chain elongation using amylosucrase from Neisseria polysaccharea via a zipper reaction mode. Journal of Agricultural and Food Chemistry, 68: 225-234. Go to original source... Go to PubMed...
  107. Xie F., Huang Q, Fang F., Chen S., Wang Z., Wang K., Fu X., Zhang B. (2019): Effects of tea polyphenols and gluten addition on in vitro wheat starch digestion properties. International Journal of Biological Macromolecules, 126: 525-530. Go to original source... Go to PubMed...
  108. Xie X., Chen J., Zhang B., Zhu H., Cheng L., Sun W. (2023): Effect of high-pressure microfluidisation on the microstructure, physicochemical properties, and digestibility of the different particle sizes of potato starch. Starch-Stärke, 76: 2300002. Go to original source...
  109. Yadav P., Bharathi U., Suruthi K., Bosco S.J.D. (2024): Effect of ultrasonic modification on physiochemical, structural, functional properties and in vitro starch digestibility of Amaranthus paniculatus (Rajgeera) starch. Biomass Conversion and Biorefinery, 14: 19017-19024. Go to original source...
  110. Yang H., Hou Y., Pan Y., Zhang T., Meng Q., Han J., Liu W., Qu D. (2023): Effect of chewing ability on in vivo oral digestive characteristics and in vitro gastrointestinal starch hydrolysis of three different types of cooked rice. Food & Function, 14: 9324-9336. Go to original source... Go to PubMed...
  111. Yuan T., Ye F., Chen T., Li M., Zhao G. (2022): Structural characteristics and physicochemical properties of starches from winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch. ex Poir.). Food Hydrocolloids, 122: 107115. Go to original source...
  112. Zeng F., Hu Z., Yang Y., Jin Z., Jiao A. (2024): Regulation of baking quality and starch digestibility in whole wheat bread based on β-glucans and protein addition strategy: Significance of protein-starch-water interaction in dough. International Journal of Biological Macromolecules, 256: 128021. Go to original source... Go to PubMed...
  113. Zeng J.C., Xiao P.J., Ling L.J., Zhang L., Tang D.B., Zhang Q.F., Chen J.G., Li J.E., Yin Z.P. (2022): Processing, digestion property and structure characterisation of slowly digestible gorgon nut starch. Food Science and Biotechnology, 31: 49-59. Go to original source... Go to PubMed...
  114. Zeng Z., Huang K., McClements D.J., Hu X., Luo S., Liu C. (2019): Phenolics, antioxidant activity, and in vitro starch digestibility of extruded brown rice influenced by Choerospondias axillaris fruit peels addition. Starch - Stärke, 71: 1800346. Go to original source...
  115. Zhang L., Chen Y., Zeng J., Zang J., Liang Q., Tang D., Wang Z., Yin Z. (2022): Digestive and physicochemical properties of small granular starch from Euryale ferox seeds growing in Yugan of China. Food Biophysics, 17: 126-135. Go to original source...
  116. Zhu F. (2015): Interactions between starch and phenolic compound. Trends in Food Science & Technology, 43: 129-143. Go to original source...
  117. Zhu J., Tao K., Prakash S., Zhang C., Gilbert R.G., Liu Q. (2023): Using starch structure to choose rice with an optimal combination of palatability and digestibility. Food Hydrocolloids, 141: 108763. Go to original source...
  118. Zhu Z., Du K., Ma Z., Ma X., Chen X., Du X. (2025): Mechanism underlying V-type structure formation in maize starch through glycerol-ethanol thermal substitution method. Carbohydrate Polymers, 348: 122862. Go to original source... Go to PubMed...
  119. Zou W., Sissons M., Gidley M.J., Gilbert R.G., Warren F.J. (2015): Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate. Food Chemistry, 188: 559-568. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.