Czech J. Food Sci., 2024, 42(6):415-422 | DOI: 10.17221/128/2024-CJFS

Prebiotic and antioxidant effects of the extracts from fruits and flowers of Cereus hildmannianusOriginal Paper

Everton da Silva Santos1, Gabriela Krausová ORCID...2, Ivana Hyrılová2, Maria de Fátima Pires da Silva Machado3, Arildo José Braz de Oliveira1,4, Gizem Özlük5, Regina Aparecida Correia Gonçalves1,4
1 Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
2 Department of Microbiology and Technology, Dairy Research Institute, Prague, Czech Republic
3 Department of Biotechnology, Genetic and Cell Biology, State University of Maringá, Maringá, Brazil
4 Department of Pharmacy, State University of Maringá, Maringá, Brazil
5 Food Engineering Department, Hitit University, Çorum, Türkiye

Cereus hildmannianus is a species with various nutritional and medicinal properties; however, the fruits and flowers have scarcely been explored. In this regard, the study investigated the bioproduction of total sugar content (TSC), total phenolic content (TPC), and total flavonoid content (TFC), antioxidant [DPPH – 2,2-diphenyl-1-picrylhydrazyl and ABTS – 2,2'-azino-bis-(-3-ethylbenzothiazoline-6-sulfonic acid)], iron chelation, and prebiotic activities of methanolic extracts from fruits (epicarps – EE, mesocarps – ME) and flowers (sepals – SE, petals – PE) of C. hildmannianus. The chemical profiles of the extracts were determined by ultra-high-performance liquid chromatography coupled with mass spectrometry. The highest accumulations of TSC were observed in the ME (64%), while the SE also had a high TFC (17 µg QE per mg DW; QE – quercetin equivalents, DW – dry weight) and the EE had a high TPC (646 µg GAE per mg DW; GAE – gallic acid equivalents). A total of 24 compounds (phenolic and organic acids; and glycosylated flavonoids) were putatively identified. The greatest antioxidant activities were obtained with the PE (DPPH: 199 µmol Trolox per mg DW; and ABTS: 59 µmol Trolox per mg DW), while the highest prebiotic effect was obtained with ME and EE regarding both fermentability and production of lactic and acetic acids by multiple species of Lactobacillus and Bifidobacterium. These promising results of bioactive compounds in the fruits and flowers of C. hildmannianus have potential applications for food and pharmaceutical purposes.

Keywords: cactus; phytochemicals; food; phenolic compounds; prebiotic activity

Received: June 26, 2024; Revised: September 22, 2024; Accepted: October 7, 2024; Prepublished online: November 15, 2024; Published: December 18, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
da Silva Santos E, Krausová G, Hyrılová I, da Silva Machado MDFP, de Oliveira AJB, Özlük G, Aparecida Correia Gonçalves R. Prebiotic and antioxidant effects of the extracts from fruits and flowers of Cereus hildmannianus. Czech J. Food Sci. 2024;42(6):415-422. doi: 10.17221/128/2024-CJFS.
Download citation

References

  1. Abbas M., Saeed F., Anjum F.M., Afzaal M., Tufail T., Bashir M.S., Ishtiaq A., Hussain S., Suleria H.A.R. (2017): Natural polyphenols: An overview. International Journal of Food Properties, 20: 1689-1699. Go to original source...
  2. Carpena M., Cassani L., Gomez-Zavaglia A., Garcia-Perez P., Seyyedi-Mansour S., Cao H., Simal-Gandara J., Prieto M. (2023): Application of fermentation for the valorization of residues from Cactaceae family. Food Chemistry, 410: 1-15. Go to original source... Go to PubMed...
  3. Cunningham M., Azcarate-Peril M.A., Barnard A., Benoit V., Grimaldi R., Guyonnet D., Holscher H.D., Hunter K., Manurung S., Obis D. (2021): Shaping the future of probiotics and prebiotics. Trends in Microbiology, 29: 667-685. Go to original source... Go to PubMed...
  4. Dias R., Pereira C.B., Pérez-Gregorio R., Mateus N., Freitas V. (2021): Recent advances on dietary polyphenol's potential roles in Celiac Disease. Trends in Food Science and Technology, 107: 213-225. Go to original source...
  5. Diaz-Vela J., Totosaus A., Cruz-Guerrero A.E., de Lourdes Pérez-Chabela M. (2013): In vitro evaluation of the fermentation of added-value agroindustrial by-products: Cactus pear (Opuntia ficus-indica L.) peel and pineapple (Ananas comosus) peel as functional ingredients. International Journal of Food Science & Technology, 48: 1460-1467. Go to original source...
  6. DuBois M., Gilles K.A., Hamilton J.K., Rebers P.T., Smith F. (1956): Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-335. Go to original source...
  7. Dutra J.C.V., de Oliveira J.B-H., dos Santos V.S., Pereira P.R.C., Ferreira J.M., Batitucci M.C.P. (2019): Fruiting increases total content of flavonoids and antiproliferative effects of Cereus jamacaru DC cladodes in sarcoma 180 cells in vitro. Asian Pacific Journal of Tropical Biomedicine, 9: 66. Go to original source...
  8. Guevara-Arauza J.C., de Jesús Ornelas-Paz J., Pimentel-González D.J., Rosales Mendoza S., Soria Guerra R.E., Paz Maldonado L.M.T. (2012): Prebiotic effect of mucilage and pectic-derived oligosaccharides from nopal (Opuntia ficus-indica). Food Science and Biotechnology, 21: 997-1003. Go to original source...
  9. Gibson G.R., Hutkins R.W., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D. (2017): The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature reviews. Gastroenterology & Hepatology, 14: 491-502. Go to original source... Go to PubMed...
  10. Ksouri R., Megdiche W., Falleh H., Trabelsi N., Boulaaba M., Smaoui A., Abdelly C. (2008): Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Comptes Rendus Biologies, 331: 865-873. Go to original source... Go to PubMed...
  11. Lavefve L., Howard L.R., Carbonero F. (2020): Berry polyphenols metabolism and impact on human gut microbiota and health. Food & Function, 11: 45-65. Go to original source... Go to PubMed...
  12. Nunes A.C.R., Mangolin C.A., de Oliveira A.J.B., Gonçalves R.A.C., da Silva Avincola A., de Almeida R.T.R., Pilau E.J., da Silva M.F.P. (2022): Cereus peruvianus Mill. (Cactaceae) as a source of natural antioxidants: Phenolic compounds and antioxidant activity of cladode extracts in two collection periods. Current Research in Nutrition and Food Science, 5: 984-991. Go to original source... Go to PubMed...
  13. Ouerghemmi I., Harbeoui H., Aidi Wannes W., Bettaieb Rebey I., Hammami M., Marzouk B., Saidani Tounsi M. (2017): Phytochemical composition and antioxidant activity of Tunisian cactus pear (Opuntia ficus indica L.) flower. Journal of Food Biochemistry, 41: 97-104. Go to original source...
  14. Pereira M.C., Steffens R.S., Jablonski A., Hertz P.F., Rios A.O., Vizzotto M., Flôres S.H. (2013): Characterization, bioactive compounds and antioxidant potential of three Brazilian fruits. The Journal of Food Composition and Analysis, 29: 19-24. Go to original source...
  15. Plamada D., Vodnar D.C. (2021): Polyphenols - Gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients, 14: 1-27. Go to original source... Go to PubMed...
  16. Santos É.S., de Melo Teixeira L., Castro J.C., Mardigan L.P., dos Santos J.R., Gonçalves J.E., de Oliveira A.J.B., Gonçalves R.A.C. (2022a): An analytical method for the quantitative determination of iron ion chelating capacity: Development and validation. Acta Scientiarum. Biological Sciences, 44: e59739. Go to original source...
  17. Santos É.S., Savam A., Cabral M.R.P., Castro J.C.C., Collet S.A.O., Mandim F., Calhelha R.C., Barros L., Machado M.F.P.S., de Oliveira A.J.B., Gonçalves R.A.C. (2022b): Low-cost alternative for the bioproduction of bioactive phenolic compounds of callus cultures from Cereus hildmannianus (K.) Schum. Journal of Biotechnology, 356: 8-18. Go to original source... Go to PubMed...
  18. Shetty A.A., Rana M., Preetham S. (2012): Cactus: A medicinal food. Journal of Food Science and Technology, 49: 530-553. Go to original source... Go to PubMed...
  19. Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Hawkins Byrne D. (2006): Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19: 669-675. Go to original source...
  20. Yang X., Lei Z., Yu Y., Xiao L., Cheng D., Zhang Z. (2019): Phytochemical characteristics of callus suspension culture of Helicteres angustifolia L. and its in vitro antioxidant, antidiabetic and immunomodulatory activities. South African Journal of Botany, 121: 178-185. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.