Czech J. Food Sci., 2024, 42(4):295-304 | DOI: 10.17221/44/2024-CJFS

Effect of the disinfectant benzalkonium chloride on Listeria monocytogenes biofilmOriginal Paper

Chao Yang1, Xiaochen Zhang1, Tao Yu2, Lin Wang1, Zichuan Zhu1, Xinjie Fan1
1 Faculty of Tourist Management, Xinxiang Vocational and Technical College, Xinxiang, China
2 School of Biological Engineering, Xinxiang University, Xinxiang, China

Listeria monocytogenes is capable of forming biofilms on the food contact surfaces, increasing the risk of food contamination by this pathogen. The disinfectant benzalkonium chloride (BC) is commonly used to control L. monocytogenes in the food industry. This study aimed to investigate effects of BC on L. monocytogenes biofilms. Biofilm biomass was measured by the microplate method with crystal violet staining. Results from the broth microdilution method showed that the minimum inhibitory concentration (MIC) of BC against L. monocytogenes 10403S was 8 μg·mL–1. Sub-MICs of BC inhibited the biofilm formation and lethal concentrations of BC removed mature biofilms of L. monocytogenes 10403S. The presence of BC reduced extracellular proteins and exopolysaccharides in biofilms. Additionally, upregulation of quorum sensing gene luxS and agrBDCA and downregulation of flagellum motility genes flaA, motA, and motB were observed in the presence of BC. The BC disinfectant has an excellent anti-biofilm activity against L. monocytogenes.

Keywords: foodborne pathogen; disinfection; anti-biofilm; extracellular polymeric substances

Received: March 7, 2024; Revised: May 31, 2024; Accepted: June 21, 2024; Prepublished online: August 7, 2024; Published: August 28, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Yang C, Zhang X, Yu T, Wang L, Zhu Z, Fan X. Effect of the disinfectant benzalkonium chloride on Listeria monocytogenes biofilm. Czech J. Food Sci. 2024;42(4):295-304. doi: 10.17221/44/2024-CJFS.
Download citation

References

  1. Abdel-Fattah Y.R., Soliman N.A., El-Toukhy N.M., El-Gendi H., Ahmed R.S. (2013): Production, purification, and characterization of thermostable α-amylase produced by Bacillus licheniformis isolate AI20. Journal of Chemistry, 1: 673173. Go to original source...
  2. Bessler C., Schmitt J., Maurer K.H., Schmid R.D. (2003): Directed evolution of a bacterial α-amylase: Toward enhanced pH-performance and higher specific activity. Protein Science, 12: 2141-2149. Go to original source... Go to PubMed...
  3. Bernfeld P. (1955): Amylases α and β. Methods in Enzymology, 1: 149-158. Go to original source...
  4. Cosa S., Mabinya L.V., Olaniran A.O., Okoh O.O., Bernard K., Deyzel S., Okoh A.I. (2011): Bioflocculant production by Virgibacillus sp. Rob isolated from the bottom sediment of Algoa Bay in the Eastern Cape, South Africa. Molecules, 16: 2431-2442. Go to original source... Go to PubMed...
  5. Dey G., Mitra A., Banerjee R., Maiti B. (2001): Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochemical Engineering Journal, 7: 227-231. Go to original source...
  6. Gangadharan D., Sivaramakrishnan S., Nampoothiri K.M., Sukumaran R.K., Pandey A. (2008): Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource Technology, 99: 4597-4602. Go to original source... Go to PubMed...
  7. Gupta R., Gigras P., Mohapatara H., Kumar V., Chauhan B. (2003): Microbial α-amylases: A biotechnological perspective. Process Biochemistry, 38: 1599-1616. Go to original source...
  8. Haq I., Ashraf H., Iqbal J., Qadeer M.A. (2003): Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresource Technology, 87: 57-61. Go to original source... Go to PubMed...
  9. Jujjavarapu S.E., Dhagat S. (2019): Evolutionary trends in industrial production of α-amylase. Recent Patents on Biotechnology, 13: 4-18. Go to original source... Go to PubMed...
  10. Lee D.H., Kim H.R., Chung H., Lim J.G., Kim S., Kim S.K., Ku H.-J., Kim H., Ryu S., Choi S.H., Lee J.-H. (2015): Complete genome sequence of Bacillus cereus FORC_005, a food-borne pathogen from the soy sauce braised fish-cake with quail-egg. Standards in Genomic Sciences, 10: 1-8. Go to original source... Go to PubMed...
  11. Mohammad N.H., EL-Sherbiny G.M., Hammad A.A., El-Nour A., Salwa A., Askar A.A. (2021): Optimization of bacterial cellulose production using Plackett-Burman and response surface methodology. Egyptian Journal of Medical Microbiology, 30: 93-101. Go to original source...
  12. Muralidhar R.V., Chirumamila R., Marchant R., Nigam P. (2001): A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal, 9: 17-23. Go to original source...
  13. Nanmori T., Numata Y., Shinke R. (1987): Isolation, and characterization of a Bacillus cereus mutant strain hyperproductive of exo-β-amylase. Applied and Environmental Microbiology, 53: 768-771. Go to original source... Go to PubMed...
  14. Osman M.S., Idris A.S.O., Anandan D., Ismail A.M., El-Hussein A.A. (2020): Optimization and production of alkaline Proteases from Bacillus subtilis MMS15 isolate. Neelain Journal of Science and Technology, 4: 9-16.
  15. Ponraj M., Jamunarani P., Zambare V. (2011): Isolation, and optimization of culture conditions for decolorization of true blue using dye decolorizing fungi. Asian Journal of Experimental Biological Sciences, 2: 270-276.
  16. Raplong H.H., Odeleye P.O., Hammuel Ch., Idoko M.O., Asanato J.I. (2014): Production of alpha-amylase by Bacillus cereus in submerged fermentation. Aceh International Journal of Science and Technology, 3: 124-130. Go to original source...
  17. Raul D., Biswas T., Mukhopadhyay S., Kumar Das S., Gupta S. (2014): Production and partial purification of alpha amylase from Bacillus subtilis (MTCC 121) using solid state fermentation. Biochemistry Research International, 2014: 568141. Go to original source... Go to PubMed...
  18. Reddy L., Wee Y.J., Yun J.-S., Ryu H.W. (2008): Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresource Technology, 99: 2242-2249. Go to original source... Go to PubMed...
  19. Rehman A., Saeed A. (2015): Isolation and screening of amylase producing Bacillus species from soil. International Journal of Advanced Research, 3: 151-164.
  20. Rehman A., Saeed A., Asad W., Baloch M.N., Ur M.M. (2019a): Utilization of agro-industrial wastes for the production of amylase by indigenously isolated Bacillus cereus AS2. International Journal of Biology and Biotechnology,16: 457-463.
  21. Rehman A., Saeed A., Asad W., Kiran T., Baloch M.N., Eijaz S. (2019b): Optimization of physicochemical parameters for maximum amylase production by indigenously isolated Bacillus cereus AS2 strain. Pakistan Journal of Pharmaceutical Sciences, 32: 889-894.
  22. Rehman A., Saeed A., Asad W., Khan I., Hayat A., Rehman M.U., Shah T.A., Sitotaw B., Dawoud T.M, Bourhia M. (2023): Eco-friendly textile desizing with indigenously produced amylase from Bacillus cereus AS2. Scientific Reports, 13: 11991. Go to original source... Go to PubMed...
  23. Shaktimay K., Datta T.K., Ray R.C. (2010): Optimization of thermostable α-amylase production by Streptomyces erumpens MTCC 7317 in solid-state fermentation using cassava fibrous residue. Brazilian Archives of Biology and Technology, 53: 301-309. Go to original source...
  24. Stergiou P.-Y., Foukis A., Theodorou L., Papagianni M., Papamichael E. (2014): Optimization of the production of extracellular α-amylase by Kluyveromyces marxianus IF0 0288 by response surface methodology. Brazilian Archives of Biology and Technology, 5: 421-426. Go to original source...
  25. Tanyildizi M. S., Özer D., Elibol M. (2005): Optimization of α-amylase production by Bacillus sp. using response surface methodology. Process Biochemistry, 40: 2291-2296. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.