Czech J. Food Sci., 2024, 42(3):153-162 | DOI: 10.17221/179/2023-CJFS

Essential oils of indigenous citrus varieties of Northeast India as potential antibiofilm agents against foodborne pathogens: An in vitro and in silico studyOriginal Paper

Surjya Loying ORCID...1,6, Rajeev Sarmah1, Manash Pratim Sarma1, Abdul Malik2, Suhail Akhtar3, Azmat Ali Khan4, Rahul Nayak5, Devabrata Saikia ORCID...1
1 Program of Biotechnology, Assam down town University, Guwahati, Assam, India
2 Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
3 Department of Biochemistry, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
4 Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
5 Program of Microbiology, Assam down town University, Guwahati, Assam, India
6 Faculty of Science, Assam down town University, Guwahati, Assam, India

The unique structural and biological diversity found in plants renders them a distinctive and sustainable source for discovering new antibacterial, antifungal and antiparasitic compounds. In the present study, antimicrobial and antibiofilm properties of essential oils of citrus varieties of Northeast India were studied against selected foodborne pathogens using both in vitro and in silico approaches. These essential oils showed significant antimicrobial and antibiofilm activities against foodborne pathogens. i.e. Bacillus cereus MTCC430 and Yersinia enterocolitica MTCC859. It was observed that the treatment with essential oil disturbed the membrane integrity of the pathogens, thereby causing the release of nucleic acids. This study also postulated that active compounds of the essential oils interact with different target proteins of the pathogens and provide an explanation for the mechanisms of antimicrobial and antibiofilm action of the essential oils of citrus varieties against foodborne pathogens.

Keywords: antimicrobial activity; hydro-distillation; membrane integrity; minimum inhibitory concentration; molecular docking

Received: October 30, 2023; Revised: April 17, 2024; Accepted: April 19, 2024; Prepublished online: June 6, 2024; Published: June 27, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Loying S, Sarmah R, Sarma MP, Malik A, Akhtar S, Khan AA, et al.. Essential oils of indigenous citrus varieties of Northeast India as potential antibiofilm agents against foodborne pathogens: An in vitro and in silico study. Czech J. Food Sci. 2024;42(3):153-162. doi: 10.17221/179/2023-CJFS.
Download citation

Supplementary files:

Download file197_2023-CJFS_ESM.pdf

File size: 1.02 MB

References

  1. Afonso A.F., Pereira O.R., Válega M., Silva A.M., Cardoso S.M. (2018): Metabolites and biological activities of Thymus zygis, Thymus pulegioides, and Thymus fragrantissimus grown under organic cultivation. Molecules, 23: 1514. Go to original source... Go to PubMed...
  2. Bajpai V.K., Sharma A., Baek K.H. (2013): Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control, 32: 582-590. Go to original source...
  3. Bhaduri S., Smith J.L. (2013): Yersinia enterocolitica. In: Labbé R.G., García S. (eds): Guide to Foodborne Pathogens. Hoboken, John Wiley & Sons: 177-187. Go to original source...
  4. Bouyahya A., Abrini J., Dakka N., Bakri Y. (2019): Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria. Journal of Pharmaceutical Analysis, 9: 301-311. Go to original source... Go to PubMed...
  5. Brahmi F., Mokhtari O., Legssyer B., Hamdani I., Asehraou A., Hasnaoui I., Rokni Y., Diass K., Oualdi I., Tahani A. (2021): Chemical and biological characterization of essential oils extracted from citrus fruits peels. Materials Today: Proceedings, 45: 7794-7799. Go to original source...
  6. Das B.S., Sarangi A., Sahoo A., Jena B., Patnaik G., Rout S.S., Bhattacharya D. (2022): Studies on phytoconstituents, antioxidant and antimicrobial activity of Trachyspermum ammi seed oil extract with reference to specific foodborne pathogens. Journal of Essential Oil Bearing Plants, 25: 1012-1028. Go to original source...
  7. Denkova-Kostova R., Teneva D., Tomova T., Goranov B., Denkova Z., Shopska V., Slavchev A., Hristova-Ivanova Y. (2021): Chemical composition, antioxidant and antimicrobial activity of essential oils from tangerine (Citrus reticulata L.), grapefruit (Citrus paradisi L.), lemon (Citrus lemon L.) and cinnamon (Cinnamomum zeylanicum Blume). Zeitschrift für Naturforschung C - A Journal of Biosciences, 76: 175-185. Go to original source... Go to PubMed...
  8. Diao W.R., Hu Q.P., Feng S.S., Li W.Q., Xu J.G. (2013): Chemical composition and antibacterial activity of the essential oil from green huajiao (Zanthoxylum schinifolium) against selected foodborne pathogens. Journal of Agricultural and Food Chemistry, 61: 6044-6049. Go to original source... Go to PubMed...
  9. El-Tarabily K.A., El-Saadony M.T., Alagawany M., Arif M., Batiha G.E., Khafaga A.F., Abd El-Hack M.E. (2021): Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi Journal of Biological Sciences, 28: 5145-5156. Go to original source... Go to PubMed...
  10. Forli S., Huey R., Pique M.E., Sanner M.F., Goodsell D.S., Olson A.J. (2016): Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11: 905-919. Go to original source... Go to PubMed...
  11. Gado D.A., Abdalla M.A., Erhabor J.O., Ehlers M.M., McGaw L.J. (2023): In vitro anti-biofilm effects of Loxostylis alata extracts and isolated 5-demethyl sinensetin on selected foodborne bacteria. South African Journal of Botany, 156: 29-34. Go to original source...
  12. Granum P.E., Lindbäck T. (2012): Bacillus cereus. In: Doyle M.P., Buchanan R.L. (eds): Food Microbiology: Fundamentals and Frontiers. Hoboken, Wiley, Blackwell Publishing (Holdings) Ltd.: 491-502. Go to original source...
  13. Gültepe N. (2020): Protective effect of d-limonene derived from orange peel essential oil against Yersinia ruckeri in rainbow trout. Aquaculture Reports, 18: 100417. Go to original source...
  14. Gupta K., Barua S., Hazarika S.N., Manhar A.K., Nath D., Karak N., Namsa N.D., Mukhopadhyay R., Kalia V.C., Mandal M. (2014): Green silver nanoparticles: Enhanced antimicrobial and antibiofilm activity with effects on DNA replication and cell cytotoxicity. RSC Advances, 4: 52845-52855. Go to original source...
  15. Kavanaugh N.L., Ribbeck K. (2012): Selected antimicrobial EOs eradicate Pseudomonas spp. and Staphylococcus aureus Biofilms. Applied and Environmental Microbiology, 78: 4057-4061. Go to original source... Go to PubMed...
  16. Kerekes E.B., Vidács A., Takó M., Petkovits T., Vágvölgyi C., Horváth G., Krisch J. (2019): Anti-biofilm effect of selected essential oils and main components on mono-and polymicrobic bacterial cultures. Microorganisms, 7: 345. Go to original source... Go to PubMed...
  17. Kowalska-Krochmal B., Dudek-Wicher R. (2021): The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 10: 165. Go to original source... Go to PubMed...
  18. Lang G., Buchbauer G. (2012): A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review. Flavour and Fragrance Journal, 27: 13-39. Go to original source...
  19. Li L., Li Z.W., Yin Z.Q., Wei Q., Jia R.Y., Zhou L.J., Xu J., Song X., Zhou Y., Du Y.-H., Peng L.-C., Kang S., Yu W. (2014): Antibacterial activity of leaf essential oil and its constituents from Cinnamomum longepaniculatum. International Journal of Clinical and Experimental Medicine, 7: 1721.
  20. Loying S., Sarmah R., Saikia D., Bhagawati P., Sarma M.P. (2023): Characterization of essential oils from four different indigenous citrus varieties of Northeast India and their antioxidant activities. International Journal of Biosciences, 22: 208-214.
  21. Mahmud J., Muranyi P., Salmieri S., Lacroix M. (2023): Optimization of a natural antimicrobial formulation against potential meat spoilage bacteria and food-borne pathogens: Mixture design methodology and predictive modeling. Microbial Pathogenesis, 176: 106000. Go to original source... Go to PubMed...
  22. Mazzantini D., Celandroni F., Salvetti S., Gueye S.A., Lupetti A., Senesi S., Ghelardi E. (2016): FlhF is required for swarming motility and full pathogenicity of Bacillus cereus. Frontiers in Microbiology, 7: 1644. Go to original source... Go to PubMed...
  23. Mitra D., Verma D., Mahakur B., Kamboj A., Srivastava R., Gupta S., Mohapatra P.K.D. (2022): Molecular docking and simulation studies of natural compounds of Vitex negundo L. against papain-like protease (PLpro) of SARS CoV-2 (coronavirus) to conquer the pandemic situation in the world. Journal of Biomolecular Structure and Dynamics, 40: 5665-5686. Go to original source... Go to PubMed...
  24. Noshad M., Behbahani B.A., Nikfarjam Z. (2022): Chemical composition, antibacterial activity and antioxidant activity of Citrus bergamia essential oil: Molecular docking simulations. Food Bioscience, 50: 102123. Go to original source...
  25. Picone C.S.F., de Almeida J.M., Crippa B.L., de Souza V.V.M.A., Alonso V.P.P., Júnior E.D.M.S., Silva N.C.C. (2023): Antimicrobial action of Oregano, Thyme, Clove, Cinnamon and Black pepper essential oils free and encapsulated against foodborne pathogens. Food Control, 144: 109356. Go to original source...
  26. Rajan S., Sharma M., Mishra P. (2023): Geographical indication for horticulture commodities in Northeastern India: Opportunities and challenges. Indian Horticulture, 68: 21-24.
  27. Rossi C., Chaves-López C., Serio A., Casaccia M., Maggio F., Paparella A. (2022): Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Critical Reviews in Food Science and Nutrition, 62: 2172-2191. Go to original source... Go to PubMed...
  28. Santana de Oliveira M., da Cruz J.N., Almeida da Costa W., Silva S.G., Brito M.D.P., de Menezes S.A.F., de Jesus Chaves Neto A.M., de Aguiar Andrade E.H., de Carvalho Junior R.N. (2020): Chemical composition, antimicrobial properties of Siparuna guianensis essential oil and a molecular docking and dynamics molecular study of its major chemical constituent. Molecules, 25: 3852. Go to original source... Go to PubMed...
  29. Sateriale D., Forgione G., de Cristofaro G.A., Pagliuca C., Colicchio R., Salvatore P., Pagliarulo C. (2023): Antibacterial and antibiofilm efficacy of thyme (Thymus vulgaris L.) essential oil against foodborne illness pathogens, Salmonella enterica subsp. enterica serovar Typhimurium and Bacillus cereus. Antibiotics, 12: 485. Go to original source... Go to PubMed...
  30. Sivasankar C., Jha N.K., Singh S.R., Murali A., Shetty P.H. (2020): Molecular evaluation of Quorum quenching potential of vanillic acid against Yersinia enterocolitica through transcriptomic and in silico analysis. Journal of Medical Microbiology, 69: 1319-1331. Go to original source... Go to PubMed...
  31. Song X., Sun Y., Zhang Q., Yang X., Zheng F., He S., Wang Y. (2019): Failure of Staphylococcus aureus to acquire direct and cross tolerance after habituation to cinnamon essential oil. Microorganisms, 7: 18. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.