Czech J. Food Sci., 2023, 41(6):406-418 | DOI: 10.17221/69/2023-CJFS

Microalgae in lab-grown meat productionReview

Arturo Nickolay Rojas-Tavara ORCID...1, Alberto Jesus Donayre-Torres ORCID...1,2*
1 Department of Bioengineering, Universidad de Ingeniería y Tecnología (UTEC), Lima, Peru
2 CentroBIO Research Center, Universidad de Ingeniería y Tecnología (UTEC), Lima, Peru

Reports have shown that meat production operations today contribute to the climate crisis, facilitating the occurrence of infectious diseases, and contributing to environmental pollution. Consequently, the public demands alternatives to traditional meat, such as in vitro manufactured meat. Several authors have suggested that improvements should be made in the manufacturing of cell-cultured meat to make a more sustainable and scalable process. They recently proposed using microalgae as a sustainable system to produce important nutrients such as oxygen from cellular waste molecules of animal cultures such as ammonia and carbon dioxide. In this review, we discuss recent advances of different microalgae applications in the production of lab-grown meat, with special emphasis on their use as a replacement for fetal bovine serum (FBS) or culture media, as well as its applicability as a source of cell oxygenation and waste upcycling to extend the life of animal cell cultures. Also, we discuss the implementation and limitations of these algae systems in large-scale in vitro meat manufacturing.

Keywords: chlorella vulgaris; co-culture; fetal bovine serum replacement; in vitro meat

Received: May 8, 2023; Revised: November 21, 2023; Accepted: November 27, 2023; Prepublished online: December 20, 2023; Published: December 28, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Nickolay Rojas-Tavara A, Jesus Donayre-Torres A. Microalgae in lab-grown meat production. Czech J. Food Sci. 2023;41(6):406-418. doi: 10.17221/69/2023-CJFS.
Download citation

References

  1. Allan S., De Bank P., Ellis M. (2019): Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor. Frontiers in Sustainable Food Systems, 3: 44. Go to original source...
  2. Bacchus W., Fussenegger M. (2013): Engineering of synthetic intercellular communication systems. Metabolic Engineering, 16: 33-41. Go to original source... Go to PubMed...
  3. Barsanti L., Gualtieri P. (2018): Is exploitation of microalgae economically and energetically sustainable? Algal Research, 31: 107-115. Go to original source...
  4. Brindley D., Davie N., Culme-Seymour E., Mason C., Smith D., Rowley J. (2012): Peak serum: Implications of serum supply for cell therapy manufacturing. Regenerative Medicine, 7: 7-13. Go to original source... Go to PubMed...
  5. European Comission (2013): Attitudes of Europeans towards building the single market for green products. Available at https://europa.eu/eurobarometer/surveys/detail/1048 (accessed Apr 3, 2022).
  6. Fang J., Wei Y., Teng X., Zhao S., Hua J. (2017): Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation. Journal of Cellular Biochemistry, 119: 3663-3670. Go to original source... Go to PubMed...
  7. Fraga A., Ribeiro R., Medeiros R. (2009): Hipoxia tumoral: Papel del factor inducible por hipoxia. Actas Urológicas Españolas, 33: 9. (in Spanish) Go to original source...
  8. Garrison G.L., Biermacher J.T., Brorsen B.W. (2022): How much will large-scale production of cell-cultured meat cost? Journal of Agriculture and Food Research, 10: 100358. Go to original source...
  9. Gerhart C., Warschun M., Donnan D., ZiemBen F. (2020): When consumers go vegan, how much meat will be left on the table for agribusiness? Kearney. Available at https://www.kearney.com/consumer-retail/article?/a/when-consumers-go-vegan-how-much-meat-will-be-left-on-the-table-for-agribusiness (accessed Apr 8, 2022).
  10. Goers L., Freemont P., Polizzi K. (2014): Co-culture systems and technologies: Taking synthetic biology to the next level. Journal of The Royal Society Interface, 11: 201400652. Go to original source... Go to PubMed...
  11. Graça J., Oliveira A., Calheiros M. (2015): Meat, beyond the plate. Data-driven hypotheses for understanding consumer willingness to adopt a more plant-based diet. Appetite, 90: 80-90. Go to original source... Go to PubMed...
  12. Haraguchi Y., Kagawa Y., Sakaguchi K., Matsuura K., Shimizu T., Okano T. (2017): Thicker three-dimensional tissue from a 'symbiotic recycling system' combining mammalian cells and algae. Scientific Reports, 7: 41594. Go to original source... Go to PubMed...
  13. Haraguchi Y., Shimizu T. (2021a): Three-dimensional tissue fabrication system by co-culture of microalgae and animal cells for production of thicker and healthy cultured food. Biotechnology Letters, 43: 1117-1129. Go to original source... Go to PubMed...
  14. Haraguchi Y., Shimizu T. (2021b): Microalgal culture in animal cell waste medium for sustainable 'cultured food' production. Archives of Microbiology, 203: 5525-5532. Go to original source... Go to PubMed...
  15. Harris R.A. (2021): Energy metabolism | Gluconeogenesis. In: Jez J. (ed.): Encyclopedia of Biological Chemistry III. Amsterdam, Elsevier: 170-186. Go to original source...
  16. Hopfner U., Schenck T., Chávez M., Machens H., Bohne A., Nickelsen J., Giunta R., Egaña J. (2014): Development of photosynthetic biomaterials for in vitro tissue engineering. Acta Biomaterialia, 10: 2712-2717. Go to original source... Go to PubMed...
  17. Humbird D. (2021): Scale-up economics for cultured meat. Biotechnology and Bioengineering, 118: 3239-3250. Go to original source... Go to PubMed...
  18. Jeong Y., Choi W., Park A., Lee Y., Lee Y., Park G., Lee S., Lee W., Ryu Y., Kang D. (2021): Marine cyanobacterium Spirulina maxima as an alternate to the animal cell culture medium supplement. Scientific Reports, 11: 4906. Go to original source... Go to PubMed...
  19. Jochems C., van der Valk J., Stafleu F., Baumans V. (2002): The use of fetal bovine serum: Ethical or scientific problem? Alternatives to Laboratory Animals, 30: 219-227. Go to original source... Go to PubMed...
  20. Khalil Y. (2021): Steak expectations for alternative protein sources. Nature Portfolio News Feature. Available at https://www.nature.com/articles/d42859-021-00061-8 (accessed Oct 26, 2022).
  21. Khan M., Shin J., Kim J. (2018): The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17: 36. Go to original source... Go to PubMed...
  22. Khodabukus A., Baar K. (2014): The effect of serum origin on tissue engineered skeletal muscle function. Journal of Cellular Biochemistry, 115: 2198-2207. Go to original source... Go to PubMed...
  23. Kolesky D., Homan K., Skylar-Scott M., Lewis J. (2016): Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 113: 3179-3184. Go to original source... Go to PubMed...
  24. Kumar P., Sharma N., Sharma S., Mehta N., Verma A., Chemmalar S., Sazili A. (2021): In-vitro meat: A promising solution for sustainability of meat sector. Journal of Animal Science Technology, 63: 693-724. Go to original source... Go to PubMed...
  25. Kumar A., Sood A., Han S.S. (2022): Technological and structural aspects of scaffold manufacturing for cultured meat: Recent advances, challenges, and opportunities. Critical Reviews in Food Science and Nutrition, 63: 1-28. Go to original source... Go to PubMed...
  26. Lee H. (2021): Three is the magic number: South Korean's Seawith targets cultured steak at US$3/kg by 2030. Food Navigator Asia. Available at https://www.foodnavigator-asia.com/Article/2021/08/02/Three-is-the-magic-number-South-Korean-s-Seawith-targets-cultured-steak-at-US-3-kg-by-2030# (accessed Apr 10, 2022).
  27. Lee D.Y., Lee S.Y., Jung J.W., Kim J.H., Oh D.H., Kim H.W., Kang J.H., Choi J.S., Kim G.D., Joo S.T., Hur S.J. (2022): Review of technology and materials for the development of cultured meat. Critical Reviews in Food Science and Nutrition, 63: 8591-8615. Go to original source... Go to PubMed...
  28. Levorson E., Santoro M., Kurtis Kasper F., Mikos A. (2014) Direct and indirect co-culture of chondrocytes and mesenchymal stem cells for the generation of polymer/extracellular matrix hybrid constructs. Acta Biomaterialia, 10: 1824-1835. Go to original source... Go to PubMed...
  29. Li X., Athira N., Luang-In V., Ling N. (2022): Lab-based meat the future food. Environmental Advances, 10: 100315. Go to original source...
  30. Lode A., Krujatz F., Brüggemeier S., Quade M., Schütz K., Knaack S., Weber J., Bley T., Gelinsky M. (2015): Green bioprinting: Fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications. Engineering in Life Sciences, 15: 177-183. Go to original source...
  31. Maharjan S., Alva J., Cámara C., Rubio A., Hernández D., Delavaux C., Correa E., Romo M., Bonilla D., Santiago M., Li W., Cheng F., Ying G., Zhang Y. (2021): Symbiotic photosynthetic oxygenation within 3d-bioprinted vascularized tissues. Matter, 4: 217-240. Go to original source... Go to PubMed...
  32. Marko J., Forauer J., Shih J., Berry T. (2022): Designing an algal co-culture system for increased sustainability in cellular agriculture. 13th Annual Sustainability Project Competition. Available at https://wp.wpi.edu/sustainability-competition13/designing-an-algal-co-culture-system-for-increased-sustainability-in-cellular-agriculture/ (accessed May 10, 2022).
  33. Mattick C., Landis A., Allenby B., Genovese N. (2015): Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environmental Science & Technology, 49: 11941-11949. Go to original source... Go to PubMed...
  34. McMahon D., Anderson P., Nassar R., Bunting J., Saba Z., Oakeley A., Malouf N. (1994): C2C12 Cells: Biophysical, biochemical, and immunocytochemical properties. American Journal of Physiology-Cell Physiology, 266: C1795-C1802. Go to original source... Go to PubMed...
  35. Ng J., Chua M., Zhang C., Hong S., Kumar Y., Gokhale R., Ee P. (2020): Chlorella vulgaris extract as a serum replacement that enhances mammalian cell growth and protein expression. Frontiers in Bioengineering and Biotechnology, 8: 564667. Go to original source... Go to PubMed...
  36. Nitsos C., Filali R., Taidi B., Lemaire J. (2020): Current and novel approaches to downstream processing of microalgae: A review. Biotechnology Advances, 45: 107650. Go to original source... Go to PubMed...
  37. O'Neill E., Cosenza Z., Baar K., Block D. (2020): Considerations for the development of cost-effective cell culture media for cultivated meat production. Comprehensive Reviews in Food Science and Food Safety, 20: 686-709. Go to original source... Go to PubMed...
  38. Okamoto Y., Haraguchi Y., Sawamura N., Asahi T., Shimizu T. (2019): Mammalian cell cultivation using nutrients extracted from microalgae. Biotechnology Progress, 36: e2941. Go to original source... Go to PubMed...
  39. Pang N., Bergeron A.D., Gu X., Fu X., Dong T., Yao Y., Chen S. (2020): Recycling of nutrients from dairy wastewater by extremophilic microalgae with high ammonia tolerance. Environmental Science & Technology, 54: 15366-15375. Go to original source... Go to PubMed...
  40. Post M. (2014): Cultured beef: Medical technology to produce food. Journal of the Science of Food and Agriculture, 94: 1039-1041. Go to original source... Go to PubMed...
  41. Post M., Levenberg S., Kaplan D., Genovese N., Fu J., Bryant C., Negowetti N., Verzijden K., Moutsatsou P. (2020): Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1: 403-415. Go to original source...
  42. Puri G., Chaudhary S.S., Singh V.K., Sharma A.K. (2015): Effects of fetal bovine serum and estrus buffalo serum on maturation of buffalo (Bubalus bubalis) oocytes in vitro. Vet World, 8: 143-146. Go to original source... Go to PubMed...
  43. Reiss J., Robertson S., Suzuki M. (2021): Cell sources for cultivated meat: Applications and considerations throughout the production workflow. International Journal of Molecular Sciences, 22: 7513. Go to original source... Go to PubMed...
  44. Richelle A., Lewis N. (2017): Improvements in protein production in mammalian cells from targeted metabolic engineering. Current Opinion in Systems Biology, 6: 1-6. Go to original source... Go to PubMed...
  45. Rouwkema J., Rivron N., van Blitterswijk C. (2008): Vascularization in tissue engineering. Trends in Biotechnology, 26: 434-441. Go to original source... Go to PubMed...
  46. Sanchez-Sabate R., Sabaté J. (2019): Consumer attitudes towards environmental concerns of meat consumption: A systematic review. International Journal of Environmental Research and Public Health, 16: 1220. Go to original source... Go to PubMed...
  47. Sans P., Combris P. (2015): World meat consumption patterns: An overview of the last fifty years (1961-2011). Meat Science, 109: 106-111. Go to original source... Go to PubMed...
  48. Sathasivam R., Radhakrishnan R., Hashem A., Abd Allah E.F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26: 709-722. Go to original source... Go to PubMed...
  49. Schneider M., Marison I., von Stockar U. (1996): The importance of ammonia in mammalian cell culture. Journal of Biotechnology, 46: 161-185. Go to original source... Go to PubMed...
  50. Sekine W., Haraguchi Y., Shimizu T., Umezawa A., Okano T. (2011): Thickness limitation and cell viability of multi-layered cell sheets and overcoming the diffusion limit by a porous-membrane culture insert. Journal of Biochips & Tissue Chips, 1: 7. Go to original source...
  51. Sinke P., Odegard I. (2021): LCA of cultivated meat: Future projections for different scenarios. CE Delft: Delft, 2021.
  52. Song S., Kim I., Nam T. (2012): Effect of a hot water extract of Chlorella vulgaris on proliferation of iec-6 cells. International Journal of Molecular Medicine, 29: 741-746.
  53. Steinfeld H., Gerber P., Wassenaar T., Castel V., Rosales M., Haan C. (2006): Livestock's long shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations. Available at https://www.fao.org/3/a0701e/a0701e.pdf (accessed Apr 8, 2022).
  54. Stephens N., Di Silvio L., Dunsford I., Ellis M., Glencross A., Sexton A. (2018): Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science & Technology, 78: 155-166. Go to original source... Go to PubMed...
  55. Szejda K., Bryant C.J., Urbanovich T. (2021): US and UK consumer adoption of cultivated meat: A Segmentation Study. Foods, 10: 1050. Go to original source... Go to PubMed...
  56. Treich N. (2021): Cultured meat: Promises and challenges. Environmental and Resource Economics, 79: 33-61. Go to original source... Go to PubMed...
  57. Tuomisto H., Teixeira de Mattos M. (2011): Environmental impacts of cultured meat production. Environmental Science & Technology, 45: 6117-6123 Go to original source... Go to PubMed...
  58. Usta S., Scharer C., Xu J., Frey T., Nash R. (2014): Chemically defined serum-free and xeno-free media for multiple cell lineages. Annals of Translational Medicine, 2: 97.
  59. Van der Valk J., Gstraunthaler G. (2017): Fetal Bovine Serum (FBS) - A pain in the dish? Alternatives to Laboratory Animals, 45: 329-332. Go to original source... Go to PubMed...
  60. Vanhonacker F., Van Loo E., Gellynck X., Verbeke W. (2013): Flemish consumer attitudes towards more sustainable food choices. Appetite, 62: 7-16. Go to original source... Go to PubMed...
  61. Wu M., Huang S., Lee G. (2010): Microfluidic cell culture systems for drug research. Lab on a Chip, 10: 939-956. Go to original source... Go to PubMed...
  62. Yao T., Asayama Y. (2017): Animal-cell culture media: History, characteristics, and current issues. Reproductive Medicine and Biology, 16: 99-117. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.