Czech J. Food Sci., 2023, 41(5):358-366 | DOI: 10.17221/83/2023-CJFS

Refined approach to the evaluation of heat resistance applied to Enterobacteriaceae in cheese stretchingOriginal Paper

Irena Němečková* ORCID..., Šárka Trešlová, Eliška Lešková
Dairy Research Institute, Prague, Czech Republic

Heat resistance of bacteria is a factor potentially limiting the production of safety foods. We focused on five Enterobacteriaceae strains related to cheese stretching and sub-pasteurisation experimental temperatures of 50–59 °C. Heat resistance was screened and obtained data were fitted to a classical log-linear model with D-values indicating highly heat-resistant strains used. For example in Klebsiella oxytoca S525, D(50)-value was 96.1 min and D(59)-value 5.1 min. In subsequent detailed measurements, the shape of inactivation curves was sigmoid with defined lag, log-linear and stationary phase. We suggest calculating refined D-values (Dr-values) using only data obtained in log-linear phases, namely Dr(temperature; lag phase). In K. oxytoca S525, the obtained results were: Dr(50; 80.9) = 61.7 min, Dr(53; 12.4) = 36.8 min, Dr(56; < 10) = 10.6 min, and Dr(59; < 3) = 4.3 min. The research of particular inactivation phases can provide interesting findings both in science and industrial practice, especially concerning the passage or persistence of hazardous strains in food processing plants.

Keywords: D-value; Klebsiella; non-linear model; Pantoea; sub-pasteurisation heating

Received: May 31, 2023; Revised: October 10, 2023; Accepted: October 12, 2023; Prepublished online: October 25, 2023; Published: October 30, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Němečková I, Trešlová Š, Lešková E. Refined approach to the evaluation of heat resistance applied to Enterobacteriaceae in cheese stretching. Czech J. Food Sci. 2023;41(5):358-366. doi: 10.17221/83/2023-CJFS.
Download citation

References

  1. Bigelow W.D., Esty J.R. (1920): Thermal death point in relation to the time of typical thermophilic organisms. The Journal of Infection Diseases, 27: 602-617. Go to original source...
  2. Buzrul S. (2022): The Weibull model for microbial inactivation. Food Engineering Reviews, 14: 45-61. Go to original source...
  3. Bylund G. (1995): Dairy Processing Handbook. Lund, Sweden, Tetra Pak Processing Systems AB.
  4. Cebrián G., Condón S., Mañas P. (2017): Physiology of the inactivation of vegetative bacteria by thermal treatments: Mode of action, influence of environmental factors and inactivation kinetics. Foods, 107: 6120107. Go to original source... Go to PubMed...
  5. Dash K.K., Fayaz U., Dar A.H., Shams R., Manzoor S., Sundarsingh A., Deka P., Khan S.A. (2022): A comprehensive review on heat treatments and related impact on the quality and microbial safety of milk and milk-based products. Food Chemistry Advances, 1: 100041. Go to original source...
  6. Den Besten H.M.W., Wells-Bennik M.H.J., Zwietering M.H. (2018): Natural diversity in heat resistance of bacteria and bacterial spores: Impact on food safety and quality. Annual Review of Food Science and Technology, 9: 383-410. Go to original source... Go to PubMed...
  7. Geeraerd A.H., Valdramidis V.P., Van Impe J.F. (2005): GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Food Microbiology, 102: 95-105. Go to original source... Go to PubMed...
  8. Lehotová V., Miháliková K., Medveďová A., Valík L. (2021): Modelling the inactivation of Staphylococcus aureus at moderate heating temperatures. Czech Journal of Food Sciences, 39: 42-48. Go to original source...
  9. Lindsay D., Robertson R., Fraser R., Engstrom S., Jordan K. (2021): Heat inactivation of microorganisms in milk and dairy products. International Dairy Journal, 121: 105096. Go to original source...
  10. Massa S., Gardini F., Sinigaglia M., Guerzoni M.E. (1992): Klebsiella pneumoniae as a spoilage organism in Mozzarella cheese. Journal of Dairy Science, 75: 1411-1414. Go to original source... Go to PubMed...
  11. Morgan J.N., Lin F.J., Eitenmiller R.R., Barnhart H.M., Toledo R.T. (1988): Thermal destruction of Escherichia coli and Klebsiella pneumoniae in human milk. Journal of Food Protection, 51: 132-136. Go to original source... Go to PubMed...
  12. Němečková I., Havlíková Š., Gelbíčová T., Pospíšilová L., Hromádková E., Lindauerová J., Baráková A., Karpíšková R. (2020): Heat-resistance of suspect persistent strains of Escherichia coli from cheesemaking plants. Czech Journal of Food Sciences, 38: 323-329. Go to original source...
  13. Parcellier A., Gurbuxani S., Schmitt E., Solary E., Garrido C. (2003): Heat-shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochemical and Biophysical Research Communications, 304: 505-512. Go to original source... Go to PubMed...
  14. Van Impe J., Smet C., Tiwari B., Greiner R., Ojha S., Stulić V., Vukušić T., Režek Jambrak A. (2018): State of the art of nonthermal and thermal processing for inactivation of micro-organisms. Journal of Applied Microbiology, 125: 16-35. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.