Czech J. Food Sci., 2023, 41(1):44-53 | DOI: 10.17221/200/2022-CJFS

Biodiversity of Vitis vinifera endophytes in conventional and biodynamic vineyardOriginal Paper

Maria Vrublevskaya1, Thi Tra My Nguyenová1, Lucie Drábová2, Petra Lovecká3, Blanka Vrchotová3, Olga Maťátková1, Markéta Kulišová1*, Irena Jarošová Kolouchová1
1 Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
2 Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Prague, Czech Republic
3 Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic

Plants are permanently exposed to biotic and abiotic stress and have therefore developed intricate resistance mechanisms, consequently. These include the presence of microbial endophytes, which can promote plant growth and ensure better resilience against unfavourable conditions. These microorganisms colonising plant tissues can directly affect plant growth by producing phytohormones, antioxidants, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, or indirectly by the production of siderophores and antifungal agents. To the best of our knowledge, this is the first study devoted to assessing bacterial endophyte diversity and their plant growth-promoting properties in two utterly distinct vineyards in view of agricultural management (conventional, biodynamic) in the Czech Republic. With these different agricultural approaches, we hypothesised different numerical representations of bacterial endophytes acquired from vine shoots and leaves, which was not proved (P = 0.743, F = 0.129). A total of 470 distinct bacterial endophytes were isolated from the Vitis vinifera plants from the conventional and biodynamic vineyard and from which over 80% were identified by the matrix-assisted laser desorption-time-of-flight mass spectrometry (MALDI-TOF MS). In both vineyards, the dominant bacterial genus was Bacillus, followed by Pantoea, Pseudomonas and Staphylococcus. Plant-promoting endophyte properties varied with respect to the season and type of vineyard. The ability to produce indole-3-acetic acid (IAA) and ACC deaminase was higher in the biodynamic vineyard, in comparison with antioxidant activity, which was found in a higher proportion in isolates from the conventional vineyard.

Keywords: 1-aminocyclopropane-1-carboxylate deaminase; antioxidant activity; grapevine; indole-3-acetic acid; matrix-assisted laser desorption-time-of-flight mass spectrometry (MALDI-TOF MS)

Accepted: January 20, 2023; Prepublished online: February 9, 2023; Published: February 27, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vrublevskaya M, Nguyenová TTM, Drábová L, Lovecká P, Vrchotová B, Maťátková O, et al.. Biodiversity of Vitis vinifera endophytes in conventional and biodynamic vineyard. Czech J. Food Sci. 2023;41(1):44-53. doi: 10.17221/200/2022-CJFS.
Download citation

Supplementary files:

Download file200_2022-CJFS_ESM.pdf

File size: 454.8 kB

References

  1. Akinsanya M.A., Goh J.K., Lim S.P., Ting A.S. (2015): Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera. FEMS Microbiology Letters, 362: 1-6. Go to original source... Go to PubMed...
  2. Andreolli M., Lampis S., Vallini G. (2017): Diversity, Distribution and Functional Role of Bacterial Endophytes in Vitis vinifera. In: Endophytes: Biology and Biotechnology, Springer, 233-266. Go to original source...
  3. Angeletti S. (2017): Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. Journal of Microbiological Methods, 138: 20-29. Go to original source... Go to PubMed...
  4. Arora S., Arora S., Sahni D., Sehgal M., Srivastava D., Singh A. (2019): Pesticides use and its effect on soil bacteria and fungal populations, microbial biomass carbon and enzymatic activity. Current Science, 116: 643-649. Go to original source...
  5. Baldan E., Nigris S., Populin F., Zottini M., Squartini A., Baldan B. (2014): Identification of culturable bacterial endophyte community isolated from tissues of Vitis vinifera 'Glera'. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 148: 508-516. Go to original source...
  6. Barbosa G.L., Gadelha F.D.A., Kublik N., Proctor A., Reichelm L., Weissinger E., Wohlleb G.M., Halden R.U. (2015): Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. International Journal of Environmental Research and Public Health, 12: 6879-6891. Go to original source... Go to PubMed...
  7. Bulgarelli D., Schlaeppi K., Spaepen S., Van Themaat E.V.L., Schulze-Lefert P. (2013): Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64: 807-838. Go to original source... Go to PubMed...
  8. Bulgari D., Casati P., Brusetti L., Quaglino F., Brasca M., Daffonchio D., Bianco P.A. (2009): Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. The Journal of Microbiology, 47: 393-401. Go to original source... Go to PubMed...
  9. Campisano A., Pancher M., Puopolo G., Puddu A., Lòpez-Fernàndez S., Biagini B., Yousaf S., Pertot I. (2015): Diversity in endophyte populations reveals functional and taxonomic diversity between wild and domesticated grapevines. American Journal of Enology and Viticulture, 66: 12-21. Go to original source...
  10. Compant S., Mitter B., Colli-Mull J.G., Gangl H., Sessitsch A. (2011): Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial Ecology, 62: 188-197. Go to original source... Go to PubMed...
  11. Cui Z.H., Bi W.L., Hao X.Y., Xu Y., Li P.M., Walker M.A., Wang Q.C. (2016): Responses of in vitro-grown plantlets (Vitis vinifera) to grapevine leafroll-associated virus-3 and PEG-induced drought stress. Frontiers in Physiology, 7: 203. Go to original source... Go to PubMed...
  12. Dastogeer K.M., Li H., Sivasithamparam K., Jones M.G., Wylie S.J. (2018): Fungal endophytes and a virus confer drought tolerance to Nicotiana benthamiana plants through modulating osmolytes, antioxidant enzymes and expression of host drought responsive genes. Environmental and Experimental Botany, 149: 95-108. Go to original source...
  13. Fidler M., Kolářová L. (2009): Analýza antioxidantů v chmelu a pivu (Analysis of antioxidants in hops and beer). Chemické listy, 103: 232-235. (in Czech)
  14. Freitas N.d.O., Yano-Melo A.M., Da Silva F.S.B., De Melo N.F., Maia L.C. (2011): Soil biochemistry and microbial activity in vineyards under conventional and organic management at Northeast Brazil. Scientia Agricola, 68: 223-229. Go to original source...
  15. Hole D.G., Perkins A., Wilson J., Alexander I., Grice P., Evans A.D. (2005): Does organic farming benefit biodiversity? Biological Conservation, 122: 113-130. Go to original source...
  16. Khan Z., Rho H., Firrincieli A., Hung S.H., Luna V., Masciarelli O., Kim S.-H., Doty S.L. (2016): Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Current Plant Biology, 6: 38-47. Go to original source...
  17. Kolouchová I., Melzoch K., Šmidrkal J., Filip V. (2005): The content of resveratrol in vegetables and fruit. Chemické listy, 99: 492-495.
  18. Li Z., Chang S., Lin L., Li Y., An Q. (2011): A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Letters in Applied Microbiology, 53: 178-185. Go to original source... Go to PubMed...
  19. Manias D., Verma A., Soni D.K. (2020) Isolation and characterization of endophytes: Biochemical and molecular approach. In: Kumar A., Kumar Singh V. (eds.): Microbial endophytes: prospects for sustainable agriculture, Duxford, Woodhead Publishing Limited: 1-14. Go to original source...
  20. Masotti P., Zattera A., Malagoli M., Bogoni P. (2022): Environmental impacts of organic and biodynamic wine produced in Northeast Italy. Sustainability, 14: 6281. Go to original source...
  21. Maykish A., Rex R., Sikalidis A.K. (2021): Organic winemaking and its subsets; biodynamic, natural, and clean wine in California. Foods, 10: 127. Go to original source... Go to PubMed...
  22. Meissner G., Athmann M.E., Fritz J., Kauer R., Stoll M., Schultz H.R. (2019): Conversion to organic and biodynamic viticultural practices: Impact on soil, grapevine development and grape quality. OENO One, 53. Go to original source...
  23. Melo J., Carolino M., Carvalho L., Correia P., Tenreiro R., Chaves S., Meleiro A.I., De Souza S.B., Dias T., Cruz C. (2016): Crop management as a driving force of plant growth promoting rhizobacteria physiology. Springerplus, 5: 1-16. Go to original source... Go to PubMed...
  24. Niculcea M., Martinez-Lapuente L., Guadalupe Z., Sánchez-Díaz M., Morales F., Ayestarán B., Antolín M.C. (2013): Effects of water-deficit irrigation on hormonal content and nitrogen compounds in developing berries of Vitis vinifera L. cv. Tempranillo. Journal of Plant Growth Regulation, 32: 551-563. Go to original source...
  25. Pancher M., Ceol M., Corneo P.E., Longa C.M.O., Yousaf S., Pertot I., Campisano A. (2012): Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Applied and Environmental Microbiology, 78: 4308-4317. Go to original source... Go to PubMed...
  26. Phetcharat P., Duangpaeng A. (2012): Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Engineering, 32: 177-183. Go to original source...
  27. Prashar P., Shah S. (2016) Impact of fertilizers and pesticides on soil microflora in agriculture. In: Lichtfouse E. (ed.): Sustainable Agriculture Reviews. Cham, Springer: 331-361. Go to original source...
  28. Sakihama Y., Cohen M.F., Grace S.C., Yamasaki H. (2002): Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 177: 67-80. Go to original source... Go to PubMed...
  29. Sergeeva E., Hirkala D.L., Nelson L.M. (2007): Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant and Soil, 297: 1-13. Go to original source...
  30. Shen S.Y., Fulthorpe R. (2015): Seasonal variation of bacterial endophytes in urban trees. Frontiers in Microbiology, 6: 427. Go to original source... Go to PubMed...
  31. Schmid F., Moser G., Müller H., Berg G. (2011): Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Applied and Environmental Microbiology, 77: 2188-2191. Go to original source... Go to PubMed...
  32. Sorokan A., Veselova S., Benkovskaya G., Maksimov I. (2021): Endophytic strain Bacillus subtilis 26D increases levels of phytohormones and repairs growth of potato plants after Colorado potato beetle damage. Plants, 10: 923. Go to original source... Go to PubMed...
  33. Soustre-Gacougnolle I., Lollier M., Schmitt C., Perrin M., Buvens E., Lallemand J.-F., Mermet M., Henaux M., Thibault-Carpentier C., Dembelé D. (2018): Responses to climatic and pathogen threats differ in biodynamic and conventional vines. Scientific Reports, 8: 1-14. Go to original source... Go to PubMed...
  34. Stranska M., Uttl L., Bechynska K., Hurkova K., Behner A., Hajslova J. (2021): Metabolomic fingerprinting as a tool for authentication of grapevine (Vitis vinifera L.) biomass used in food production. Food Chemistry, 361: 130-166. Go to original source... Go to PubMed...
  35. Suman A., Yadav A. N., Verma P. (2016) Endophytic microbes in crops: Diversity and beneficial impact for sustainable agriculture. In: Singh D., Singh H., Prabha R. (eds.): Microbial Inoculants in Sustainable Agricultural Productivity. New Delhi, Springer: 117-143. Go to original source...
  36. Uhlik O., Strejcek M., Junkova P., Sanda M., Hroudova M., Vlcek C., Mackova M., Macek T. (2011): Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry-and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Applied and Environmental Microbiology, 77: 6858-6866. Go to original source... Go to PubMed...
  37. Vitulo N., Lemos W.J.F. Jr., Calgaro M., Confalone M., Felis G.E., Zapparoli G., Nardi T. (2019): Bark and grape microbiome of Vitis vinifera: influence of geographic patterns and agronomic management on bacterial diversity. Frontiers in Microbiology, 9: 3203 Go to original source... Go to PubMed...
  38. West E., Cother E., Steel C., Ash G. (2010): The characterization and diversity of bacterial endophytes of grapevine. Canadian Journal of Microbiology, 56: 209-216. Go to original source... Go to PubMed...
  39. Xia Y., DeBolt S., Dreyer J., Scott D., Williams M.A. (2015): Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in Plant Science, 6: 490. Go to original source... Go to PubMed...
  40. Xin G., Zhang G., Kang J.W., Staley J.T., Doty S.L. (2009): A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood. Biology and Fertility of Soils, 45: 669-674. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.