Czech J. Food Sci., 2022, 40(4):305-312 | DOI: 10.17221/57/2022-CJFS
Use of rheological plastic models to describe the flow behaviour of unconventional chocolate massesOriginal Paper
- 1 Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- 2 Department of Technology and Automobile Transport (section Physics), Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
The chocolate mass behaves like a typical non-Newtonian plastic liquid defined by the yield stress and the plastic shear stress. The rotary rheometer with a cone-plate spindle system was chosen to determine the flow properties of chocolate masses. The effect of shear stress on shear deformation rates was measured at a temperature of 40 °C in an ascending mode from 1 s-1 to 500 s-1 for chocolate samples [white chocolate (WC), ruby chocolate (RC), and caramelised Amber chocolate (AC)]. Plastic models, according to Casson, Bingham and Herschel-Bulkley, were used for the mathematical description of this dependence. The Herschel-Bulkley model was evaluated as the most suitable mathematical model for describing the flow behaviour of unconventional chocolate masses. The Herschel-Bulkley model was chosen based on a high value of the coefficient of determination R2 and a low value of the sum of the square error estimate (SSE). The non-Newtonian plastic behaviour was confirmed, and the yield stress was determined for all types of tested chocolate masses.
Keywords: white chocolate; ruby chocolate; Amber chocolate; rheology; plastic behaviour; yield stress
Published: August 29, 2022 Show citation
References
- Aeschlimann J.M., Beckett S.T. (2000): International inter-laboratory trials to determine the factors affecting the measurement of chocolate viscosity. Journal of Texture Studies, 31: 541-576.
Go to original source...
- Afoakwa E.O. (2010): Chocolate Science and Technology. Chichester, United Kingdom, Wiley-Blackwell: 258.
Go to original source...
- Afoakwa E.O., Paterson A., Fowler M., Vieira J. (2009): Comparison of rheological models for determining dark chocolate viscosity. International Journal of Food Science and Technology, 44: 162-167.
Go to original source...
- Ardakani H.A., Mitsoulis E., Hatzikiriakos S.G. (2014): Capillary flow of milk chocolate. Journal of Non-Newtonian Fluid Mechanics, 210: 56-65.
Go to original source...
- Aydin N., Kyan-Pour N., Toker O.S. (2021): Caramelized white chocolate: Effects of production process on quality parameters. Journal of Food Measurement and Characterisation, 15: 3182-3194.
Go to original source...
- Bair S.S., McCabe C. (2007): High-Pressure Rheology for Quantitative Elastohydrodynamics. 1st Ed. Amsterdam, the Netherlands, Elsevier: 260.
- Bergemann N., Heil M., Smith B., Juel A. (2018): From elastic deformation to flow in tempered chocolate. Journal of Rheology, 62: 1-21.
Go to original source...
- Briggs J.L., Wang T. (2004): Influence of shearing and time on the rheological properties of milk chocolate during tempering. Journal of the American Oil Chemists' Society, 81: 117-121.
Go to original source...
- Burke R., Kelly A.L., Lavelle Ch., This von Kientza H. (2021): Handbook of Molecular Gastronomy: Scientific Foundations, Educational Practices, and Culinary Applications. 1st Ed. New York, US, CRC Press: 894.
Go to original source...
- Cahyani A., Kurniasari J., Nafingah R., Rahayoe S., Harmayani E., Saputro A.D. (2019): Determining Casson yield value, Casson viscosity and thixotropy of molten chocolate using viscometer. In: IOP Conference Series: Earth and Environmental Science, South Sulawesi, Indonesia, Aug 6-8, 2019: 1-8.
Go to original source...
- Coady Ch. (2000): Chocolate Companion: A Connoisseur's Guide to the World's Finest Chocolates (Čokoláda: Průvodce znalce světem nejjemnějších čokoládových cukrovinek). 1st Ed. Prague, Czech Republic, Fortuna Print: 192. (in Czech)
- da Silva Lannes S.C., Medeiros M.L. (2008): Rheological properties of chocolate drink from cupuassu. International Journal of Food Engineering, 4: 1-10.
Go to original source...
- de Graef V., Depypere F., Minnaert M., Dewettinck K. (2011): Chocolate yield stress as measured by oscillatory rheology. Food Research International, 44: 2660-2665.
Go to original source...
- de Jesus Silva G., Gonçalves B.H.R.F., de Jesus D.C., Vidigal M.C.T.R., Minim L.A., Ferreira S.O., Bonomo R.C.F., Ferrão S.P.B. (2019): Study of the structural properties of goat's milk chocolates with different concentrations of cocoa mass. Journal of Texture Studies, 50: 547-555.
Go to original source...
Go to PubMed...
- Fernandes V.A., Müller A.J., Sandoval A.J. (2013): Thermal, structural and rheological characteristics of dark chocolate with different compositions. Journal of Food Engineering, 116: 97-108.
Go to original source...
- Glicerina V., Balestra F., Rosa M.D., Romani S. (2016): Microstructural and rheological characteristics of dark, milk and white chocolate: A comparative study. Journal of Food Engineering, 169: 165-171.
Go to original source...
- Hinneh M., Van de Walle D., Haeck J., Abotsi E.E., De Winne A., Saputro A.D., Messens K., Van Durme J., Afoakwa E.O., De Cooman L., Dewettinck K. (2019): Applicability of the melanger for chocolate refining and Stephan mixer for conching as small-scale alternative chocolate production techniques. Journal of Food Engineering, 253: 59-71.
Go to original source...
- Kroh L.W. (1994): Caramelisation in food and beverages. Food Chemistry, 51: 373-379.
Go to original source...
- Kumbár V., Kouřilová V., Dufková R., Votava J., Hřivna L. (2021): Rheological and pipe flow properties of chocolate masses at different temperatures. Foods, 10: 2519.
Go to original source...
Go to PubMed...
- Kumbár V., Polcar A., Votava J. (2015): Physical and mechanical properties of bioethanol and gasoline blends. Listy Cukrovarnicke a Reparske, 131: 112-116.
- Lannes S.C.S., Medeiros M.L., Gioielli L.A. (2004): Rheological properties of cupuassu and cocoa fats. Grasas y Aceites, 55: 115-121.
Go to original source...
- Lucisano M., Casiraghi E., Mariotti M. (2006): Influence of formulation and processing variables on ball mill refining of milk chocolate. European Food Research Technology, 223: 797-802.
Go to original source...
- Montoya C.C., Valencia W.G., Sierra J.A., Penagos L. (2021): Enhanced pink-red hues in processed powders from unfermented cacao beans. LWT - Food Science and Technology, 138: 1-7.
Go to original source...
- Šeremet D., Mandura A., Vojvodic Cebin A., Oskomic M., Champion E., Martinic A., Komes D. (2019): Ruby chocolate - Bioactive potential and sensory quality characteristics compared with dark, milk and white chocolate. Food in Health and Disease: Scientific-Professional Journal of Nutrition and Dietetics, 8: 89-96.
- Servais C., Ranc H., Roberts I.D. (2007): Determination of chocolate viscosity. Journal of Texture Studies, 34: 467-497.
Go to original source...
- Singh R.P., Heldman D.R. (2014): Fluid flow in food processing. In: Singh R.P., Heldman D.R. (eds.): Introduction to Food Engineering. 5th Ed. Cambridge, US, Academic Press: 65-209.
Go to original source...
- Sulaiman K.B., Yang T.A. (2015): Color characteristics of dried cocoa using shallow box fermentation technique. International Scholarly and Scientific Research & Innovation, 9: 1281-1285.
- Taylor J.E., Van Damme I., Johns M.L., Routh A.F., Wilson D.I. (2009): Shear rheology of molten crumb chocolate. Journal of Food Science, 74: 55-61.
Go to original source...
Go to PubMed...
- Trost D., Polcar A., Boldor D., Nde D.B., Wolak A., Kumbár V. (2021): Temperature dependence of density and viscosity of biobutanol-gasoline blends. Applied Sciences, 11: 3172.
Go to original source...
- Vásquez Ch., Henríquez G., López J.V., Penott-Chang E.K., Sandovala A.J., Müller A.J. (2019): The effect of composition on the rheological behavior of commercial chocolates. LWT - Food Science and Technology, 111: 744-750.
Go to original source...
- Zzaman W., Issara U., Febrianto N.F., Yang T.A. (2014): Fatty acid composition, rheological properties and crystal formation of rambutan fat and cocoa butter. International Food Research Journal, 21: 983-987.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.