Czech J. Food Sci., 2022, 40(3):221-228 | DOI: 10.17221/278/2021-CJFS
Evaluation of three-phase centrifugal separator machine (Tricanter) for olive oil extractionOriginal Paper
- 1 Department of Agricultural Machinery Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- 2 National Research Centre of Pumps, Jiangsu University, Zhenjiang, China
One of the most important machines in the olive oil extraction line is the horizontal three-phase centrifugal separator machine or Tricanter. The purpose of this paper is to evaluate the machine designed on the basis of Tricanter and to evaluate the quality of extracted olive oil. For this purpose, four different olive cultivars from Gilan Province in Iran were used. In this research the rotational speed of the Tricanter machine was tested at three levels of 2 500, 3 000, and 3 500 rpm and the content of water added to olive paste was used at three levels of 10, 20, and 30% of the paste mass. Peroxide value (PV) and percentage of acidity were measured for oil extracted from all four olive cultivars. The results of the analysis of variance (ANOVA) test showed that rotational speed and the content of added water had an effect on the acidity and PV for all samples of olive cultivars. The measured values showed that the best speed for the Tricanter machine is 3 500 rpm. At this rotational speed, the peroxide and acidity values are lower than the standard values.
Keywords: tricanter machine; rotational speed; content of water added; peroxide value; free fatty acids (acidity)
Published: June 29, 2022 Show citation
References
- Akbarnia A. (2007): Effects of mechanical and temperature parameters on quality and quantity of olive oil. [PhD. Thesis]. Karaj, University of Tehran. (in Persian)
- Altieri G. (2010): Comparative trials and an empirical model to assess throughput indices in olive oil extraction by decanter centrifuge. Journal of Food Engineering, 97: 46-56.
Go to original source...
- Ambrosone L., Mosea M., Ceglie A. (2007): Impact of edible surfactants on the oxidation of olive oil in water-in-oil emulsions. Food Hydrocolloids, 21: 1163-1171.
Go to original source...
- AOCS (1993): Official Methods and Recommended Practices of the American Oil Chemists' Society. 4th Ed. Champaign, Illinois, US, American Oil Chemists' Society (AOCS).
- Azadbakht M., Ghajarjazi E., Abdi-Gaol F., Amiri E. (2015): Determination of some physical and mechanical properties of Barkat variety of broad bean. Agricultural Engineering International: CIGR Journal, 17: 364-375.
- Bianchi G. (2003): Lipids and phenols in table olives. European Journal of Lipid Science and Technology, 105: 229-242.
Go to original source...
- Doveri S., Baldoni L. (2017): Olive. In: Kole C. (ed.): Fruits and Nuts. Berlin, Heidelberg, Springer: 253-264.
Go to original source...
- Ehteshamnia A., Zahedi B. (2017): Study of the effect of growth zone on fatty acids in four olive cultivars in Lorestan province. Journal of Plant Production Research, 24: 93-108. (in Persian)
- Ferguson L., Rosa U.A., Castro-Garcia S., Lee S.M., Guinard J.X., Burns J., Krueger G., O'Connell N.V., Glozer K. (2010): Mechanical harvesting of California table and oil olives. Advances in Horticultural Science, 24: 53-63.
- Flottweg Tricanter (2021): Three Phases with the Highest Selectivity. Flottweg Company. Available at https://www.flottweg.com/product-lines/tricanterr/ (accessed Sept 1, 2021).
- Gomez A.S., Mancebo C.V., Salvador D.M., Fregapane G. (2007): Evolution of major and minor components and oxidation indices of virgin olive oil during. Food Chemistry, 100: 36-42.
Go to original source...
- Herák D., Kabutey A., Sedláček A., Gurdil G. (2012). Mechanical behaviour of several layers of selected plant seeds under compression loading. Research in Agricultural Engineering, 58: 24-29.
Go to original source...
- International Olive Council (2015): Trade Standard Applying to Olive Oils and Olive Pomace Oils. COI/T.15/NC No 3/ Rev. Available at https://www.internationaloliveoil.org/what-we-do/chemistry-standardisation-unit/standardsand-methods/ (accessed Nov, 2019).
- Landete J.M., Curiel J.A., Rodríguez H., de las Rivas B., Munoz R. (2008): Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chemistry, 107: 320-326.
Go to original source...
- Loumou A., Giourga C. (2003): Olive groves: The life and identity of the Mediterranean. Agriculture and Human Values, 20: 87-95.
Go to original source...
- Malek F. (2007): Olive oil: Chemistry and technology. Univesity of Tehran Press, 1: 131-133. (in Persian)
- Monfreda M., Gobbi L., Grippa A. (2014): Blends of olive oil and seeds oil: Characterization and olive oil quantification using fatty acids composition. Journal of Food Chemistry, 145: 584-592.
Go to original source...
Go to PubMed...
- Owen R.W., Mier W., Giacosa A., Hull W.E., Spiegelhalder B., Bartsch H. (2000): Phenolic compounds and squalene in olive oils: The concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Food and Chemical Toxicology, 38: 647-659.
Go to original source...
Go to PubMed...
- Pastore G., Aloise A.D., Lucchetti S. (2017): Effect of oxygen reduction during malaxation on the quality of extra virgin olive oil (Cv. Carboncella) extracted through 'two-phase' and 'three-phase' centrifugal decanters. Journal of Food Science and Technology, 59: 163-172.
Go to original source...
- Ranalli A., Cabras P., Iannucciand E., Contento S. (2001): Lipochroms, vitamins, aromas and other compounds of virgin olive oil are affected by processing technology. Food Chemistry, 73: 445-451.
Go to original source...
- Raufi H., Yousef Zadeh H. (2015): Edible Fats and Oils-Frying Oil - Specifications and Test Methods, Standard No. 4152. Tehran, Iran, Institute of Standards and Industrial Research of Iran (ISIRI): 24. (in Persian)
- Servili M., Selvaggini R., Taticchi A., Esposto S., Motedoro G.F. (2003): Volatile compounds and phenolic composition of virgin olive oil: Optimization of temperature and time of exposure of olive pastes to air contact during the mechanical extraction process. Journal of Agricultural and Food Chemistry. 51: 7980-7988.
Go to original source...
Go to PubMed...
- Vakamalla T.R., Koruprolu V.B.R., Mangadoddy T., Arugonda R. (2017): Development of novel hydrocyclone designs for improved fines classification using multiphase CFD model. Journal of Separation and Purification Technology, 175: 481-497.
Go to original source...
- Zhu Y., Lee K. (1999): Experimental study on small cyclone operating at high flow rates. Journal of Aerosol Science, 30: 1303-1315.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.