Czech J. Food Sci., 2021, 39(6):452-459 | DOI: 10.17221/146/2020-CJFS
Extraction optimisation and lipid-lowering activity of Auricularia heimuer polysaccharidesOriginal Paper
- 1 Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
- 2 Institute of Food Research, Hezhou University, Hezhou, China
- 3 Heilongjiang Johnsun Biological Engineering Co., Ltd., Harbin, China
- 4 Heilongjiang Engineering Technology Research Center of Black Fungus Resource Utilization, Harbin, China
Assessments of molecular weight distribution and activity/efficacy of Auricularia heimuer polysaccharides (AAP) are of substantial significance for its extraction process optimisation. In the present study, single-factor orthogonal test and response surface methodology were employed to optimise extraction conditions of AAP. Furthermore, a rat hyperlipidaemia model was established to compare the lipid-lowering activity of polysaccharides obtained by three extraction methods. Conditions for enzymatic hydrolysis were optimised as pH 5.0, 1% cellulase, 2.5% substrate concentration and enzymolysis time of 1.5 h, leading to an up to 31.8% polysaccharide yield and 89.13% of polysaccharides within the molecular weight range of 5 000 Da to 10 000 Da. The results of animal experiments showed that the lipid-lowering activity of enzymolysis-extracted polysaccharides was significantly higher than that of water- and ultrasonic-extracted ones (P < 0.01). So the present study revealed that enzymatic hydrolysis-extracted polysaccharides showed the strongest hypolipidaemia activity, providing a basis for the development of A. heimuer-based functional foods and drugs.
Keywords: hot water extraction; ultrasonic-assisted; cellulase-assisted; molecular weight; HPLC
Published: December 16, 2021 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Bao Z., Yao L., Zhang X., Lin S. (2020): Isolation, purification, characterization, and immunomodulatory effects of polysaccharide from Auricularia auricula on RAW264.7 macrophages. Journal of Food Biochemistry, 44: e13516.
Go to original source...
Go to PubMed...
- Bian C., Wang Z.Y., Shi J. (2020): Extraction optimization, structural characterization, and anticoagulant activity of acidic polysaccharides from Auricularia auricula-judae. Molecules, 25: 710.
Go to original source...
Go to PubMed...
- Cai M., Lin Y., Luo Y.L.L., Liang H.H., Sun P.L. (2015): Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-judae (higher basidiomycetes). International Journal of Medicinal Mushrooms, 17: 591-600.
Go to original source...
Go to PubMed...
- Chen G., Luo Y., Ji B.P., Li B., Guo Y., Li Y., Su W., Xiao Z.L. (2008): Effect of polysaccharide from Auricularia auricula on blood lipid metabolism and lipoprotein lipase activity of ICR mice feda cholesterol-enriched diet. Journal of Food Science, 73: 103-108.
Go to original source...
Go to PubMed...
- Chen J.C., Lu X.F., He G.P. (2010): Research progress of screening methods for hypolipidemic components in vitro. Food Science, 31: 287-291.
- Gu J., Li Q., Liu J, Ye Z., Feng T., Wang G., Wang W., Zhang Y. (2021): Ultrasonic-assisted extraction of polysaccharides from Auricularia auricula and effects of its acid hydrolysate on the biological function of Caenorhabditis elegans. International Journal of Biological Macromolecules, 167: 423-433.
Go to original source...
Go to PubMed...
- Jain K.S., Kathiravan M.K., Somani R.S., Shishoo C.J. (2007): The biology and chemistry of hyperlipidemia. Bioorganic & Medicinal Chemistry, 15: 4674-4699.
Go to original source...
Go to PubMed...
- Jambrak A.R., Mason T.J., Paniwnyk L., Lelas V. (2007): Ultrasonic effect on pH, electric conductivity, and tissue surface of button mushrooms, Brussels sprouts and cauliflower. Czech Journal of Food Sciences, 25: 90-99.
Go to original source...
- Li L., Su Y., Feng Y., Hong R. (2020): A comparison study on digestion, anti-inflammatory and functional properties of polysaccharides from four Auricularia species. International Journal of Biological Macromolecules, 154: 1074-1081.
Go to original source...
Go to PubMed...
- Ma Y.P., Bao Y.H., Kong X.H., Tian J.J., Han B., Zhang J.C., Chen X.J., Zhang P.Q., Wang H., Dai X.D., Liu J.N., Han Z.H., Ma Q.F. (2018): Optimization of melanin extraction from the wood ear medicinal mushroom, Auricularia auricula-judae (Agaricomycetes), by response surface methodology and its antioxidant activities in vitro. International Journal of Medicinal Mushrooms, 20: 1087-1095.
Go to original source...
Go to PubMed...
- Wang Y.P. Wang C.N., Guo M.R. (2019): Effects of ultrasound treatment on extraction and rheological properties of polysaccharides from Auricularia cornea var. Li. Molecules, 24: 939.
Go to original source...
Go to PubMed...
- Wu Q., Qin D., Cao H., Bai Y. (2020): Enzymatic hydrolysis of polysaccharide from Auricularia auricula and characterization of the degradation product. International Journal of Biological Macromolecules, 162: 127-135.
Go to original source...
Go to PubMed...
- Xiong W., Zhang Q.T., Yin F., Yu S.H., Ye T.T., Pan W.S., Yang X.G. (2015): Auricularia auricular polysaccharide-low molecular weight chitosan polyelectrolyte complex nanoparticles: Preparation and characterization. Asian Journal of Pharmaceutical Sciences, 11: 439-448.
Go to original source...
- Yuan Y., Wu F., Si J., Zhao Y.F., Dai Y.C. (2017): Whole genome sequence of Auricularia heimuer (basidiomycota, fungi), the third most important cultivated mushroom worldwide. Genomics, 111: 50-58.
Go to original source...
Go to PubMed...
- Yue C., Zang X., Chen C., Dong L., Liu Y., Yu G. (2019): Purification, characterization and in vitro bile salt-binding capacity of polysaccharides from Armillaria mellea mushroom. Czech Journal of Food Sciences, 37: 51-56.
Go to original source...
- Zeng F., Zhao C., Pang J., Lin Z., Huang Y., Liu B. (2013): Chemical properties of a polysaccharide purified from solid-state fermentation of Auricularia auricular and its biological activity as a hypolipidemic agent. Journal of Food Science, 78: 1470-1475.
Go to original source...
Go to PubMed...
- Zhang J.C., Kong X.H., Zhang P.Q., Liu J.N., Ma Y.P., Dai X.D., Han Z.H., Ma Q.F., Wang X.Y., Yu L.P. (2017): Identification of a new fungal pathogen causing white villous disease on the fruiting body of the culinary-medicinal mushroom Auricularia auricula-judae (Agaricomycetes) in China. Internal Journal Medicinal Mushrooms, 19: 155-161.
Go to original source...
Go to PubMed...
- Zhang L., Yang L., Ding Q., Chen X. (1995): Studies on molecular weights of polysaccharides of Auricularia auricula-judae. Carbohydrate Research, 270: 1-10.
Go to original source...
Go to PubMed...
- Zhou G.H., Yu G.P. (2005): Effect study of Auricularia polysaccharide on reducing blood lipid. Modern Food and Science Technology, 21: 46-48.
- Zou L.F., Shen Y.H., Huang X.Z. (2016): Progress in research on hypolipidemic mechanisms of functional food components. Food Science, 37: 239-244.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.