Czech J. Food Sci., 2021, 39(5):384-392 | DOI: 10.17221/265/2020-CJFS
Extrusion rheometry of collagen doughOriginal Paper
- Department of Process Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
Although collagen is widely used (for example, in the food industry, in the pharmaceutical industry and in biomedicine), the rheological properties of the material are not well known for high concentrations (8% collagen, 90% water). Rheological properties were measured using a capillary-slit rheometer (an extrusion process), where the tested sample of collagen matter was pushed by a hydraulically driven piston through a narrow rectangular slit at very high shear rates of 50-6 000 s-1. The Herschel-Bulkley (HB) constitutive equation and a new correlation taking into account the finite gap width was used to evaluate the rheological properties (n = 0.2, K = 879 Pa sn, τ0 = 2 380 Pa). Use was made of a new yield stress measurement method evaluating τ0 'post mortem' after extrusion stops. The effects of wall slip and of air bubbles, which caused apparent compressibility of the 'silly putty' collagen material, were also studied. Corrections of the wall slip effect were implemented using sliding layer thickness δ.
Keywords: compressibility; Herschel-Bulkley; rheometer; wall slip; yield stress
Published: October 14, 2021 Show citation
References
- Barbut S., Ioi M., Marcone M. (2020): Co-extrusion of collagen casings. Effects of preparation, brining, and heating on strength, rheology and microstructure. Italian Journal of Food Science, 32: 91-106.
- Barnes H.A., Hutton J.F., Walters K. (1989): An Introduction to Rheology. New York, USA, Elsevier Science Publishing Co.: 5-109.
- Demeter M., Meltzer V., Călina I., Scărișoreanu A., Micutz M., Albu Kaya M.G. (2020): Highly elastic superabsorbent collagen/PVP/PAA/PEO hydrogels crosslinked via e-beam radiation. Radiation Physics and Chemistry, 174: 108898.
Go to original source...
- Houška M., Landfeld A., Skočilas J., Žitný R., Novotná P., Štancl J., Dostál M., Chvátil D. (2016): The effect of irradiation on rheological and electrical properties of collagen. Applied Rhelogy, 26: 43775.
- Kumar V.A., Caves J.M., Haller C.A., Dai E., Liu L., Grainger S., Chaikof E.L. (2013): Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomaterialia, 9: 8067-8074.
Go to original source...
Go to PubMed...
- Li G., Tian Z., Shen L., Liu W. (2020): Construction of collagen gel with high viscoelasticity and thermal stability via combining cross-linking and dehydration. Journal of Biomedical Materials Research, 108: 1934-1943.
Go to original source...
Go to PubMed...
- Mackay M.E. (2018): The importance of rheological behavior in the additive manufacturing technique material extrusion. Journal of Rheology, 62: 1549-1561.
Go to original source...
- Micutz M., Brazdaru L., Staicu T., Albu M., Sulea D., Leca M. (2015): Structural and rheological properties of collagen hydrogels containing tannic acid and chlorhexidine digluconate intended for topical applications. Comptes Rendus Chimie, 18: 160-169.
Go to original source...
- Shibli J.A., Saska S., Pilatti L., Blay A. (2021): Bioresorbable polymers: Advanced materials and 4D printing for tissue engineering. Polymers, 13: 563.
Go to original source...
Go to PubMed...
- Skočilas J., Žitný R., Štancl J., Dostál M., Landfeld A., Houška M. (2016): Rheological properties of collagen matter predicted using an extrusion rheometer. Journal of Texture Studies, 47: 514-522.
Go to original source...
- Sofou S., Muliawan E.B., Hatzikiriakos S.G., Mitsoulis E. (2008): Rheological characterization and constitutive modeling of bread dough. Rheologica Acta, 47: 369-381.
Go to original source...
- Steffe J.F. (1996). Rheological Methods in Food Process Engineering. 2nd Ed. East Lansing, Michigan, USA, Freeman Press: 121-343.
- Tanner R.I. (2000). Engineering Rheology. 2nd Ed. New York, USA, Oxford University Press: 19-152.
Go to original source...
- Tanner R.I., Dai S., Wang Ch. (2006): On the compressibility of bread dough. Korea-Australia Rheology Journal, 18: 127-131.
- Tanner R.I., Qi F., Dai S. (2008): Bread dough rheology and recoil. Journal of Non-Newtonian Fluid Mechanics, 148: 33-40.
Go to original source...
- Weiss J., Oechsle A.M, Häupler M., Gibis M., Kohlus R. (2015): Modulation of the rheological properties and microstructure of collagen by addition of co-gelling proteins. Food Hydrocolloids, 49: 118-126.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.