Czech J. Food Sci., 2021, 39(4):235-264 | DOI: 10.17221/69/2021-CJFS
Instrumental analytical tools for mycobacteria characterisationReview
- 1 Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
- 2 Hospital with Polyclinic Karviná-Ráj Department Orlová, Czech Republic
- 3 Veterinary Research Institute, Brno, Czech Republic
- 4 Institute for Research and Education, Brno, Czech Republic
Mycobacteria in drinking water and in the water of swimming pools, whirlpools, hydrotherapy facilities and aquaria contribute significantly to human exposure to triggers of immune regulated chronic inflammatory and autoimmune diseases. Technological elements of water distribution systems, especially their inner surface, taps, shower heads and blind spots where sediments settle, affect the number of mycobacteria in the water. The review presents the possibilities of using analytical instruments for rapid determination of mycobacteria and for their typing as an alternative to classical culture and a method of monitoring specific nucleic acid sequences by polymerase chain reaction (PCR). Information about the use of flow cytometry (FCM), matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) spectrometry, Raman and infrared (IR) spectroscopy and biosensors are presented.
Keywords: flow cytometry; MALDI-TOF spectrometry; Raman spectroscopy; infrared spectroscopy; biosensors
Published: August 29, 2021 Show citation
References
- Abbas Q., Pissard A., Baeten V. (2020): Near-infrared, mid-infrared, and Raman spectroscopy. In: Pico Y. (ed.): Chemical Analysis of Food, Techniques and Applications. 2nd Ed. Waltham, USA, Elsevier Inc.: 77-134.
Go to original source... - Ahmad A., Afghan S., Raykundalia C., Catty D. (1995): Diagnosis of tuberculosis by using ELISA to detect 38 KDa mycobacterial antigen in the patients. Medical Journal of Islamic World Academy of Sciences, 8: 155-160.
- Ahmed M.K., Amiama F., Sealy E.A. (2009): Unique spectral features of DNA infrared bands of some microorganisms. Spectroscopy, 23: 291-297.
Go to original source... - Akyar I., Cavusoglu C., Ayas M., Surucuoglu S., Ilki A., Kaya D.E., Besli Y. (2018): Evaluation of the performance of MALDI-TOF MS and DNA sequence analysis in the identification of mycobacteria species. Turkish Journal of Medical Sciences, 48: 1351-1357.
Go to original source...
Go to PubMed... - Alcaide F., Amlerova J., Bou G., Ceyssens P.J., Coll P., Corcoran D., Fangous M.S., Gonzalez-Alvarez I., Gorton R., Greub G., Hery-Arnaud G., Hrabak J., Ingebretsen A., Lucey B., Marekovic I., Mediavilla-Gradolph C., Monte M.R., O'Connor J., O'Mahony J., Opota O., O'Reilly B., OrthHoller D., Oviano M., Palacios J.J., Palop B., Pranada A.B., Quiroga L., Rodriguez-Temporal D., Ruiz-Serrano M.J., Tudo G., Van den Bossche A., van Ingen J.,Rodriguez-Sanchez B. (2018): How to: Identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clinical Microbiology and Infection, 24: 599-603.
Go to original source...
Go to PubMed... - Alcolea-Medina A., Fernandez M.T.C., Montiel N., Garcia M.P.L., Sevilla C.D., North N., Lirola M.J.M., Wilks M. (2019): An improved simple method for the identification of Mycobacteria by MALDI-TOF MS (matrix-assisted laser desorption-ionization mass spectrometry). Scientific Reports, 9: 20216.
Go to original source...
Go to PubMed... - Alula M.T., Krishnan S., Hendricks N.R., Karamchand L., Blackburn J.M. (2017): Identification and quantitation of pathogenic bacteria via in-situ formation of silver nanoparticles on cell walls, and their detection via SERS. Microchimica Acta, 184: 219-227.
Go to original source... - Alvarez-Barrientos A., Arroyo J., Canton R., Nombela C., Sanchez-Perez M. (2000): Applications of flow cytometry to clinical microbiology. Clinical Microbiology Reviews, 13: 167-195.
Go to original source...
Go to PubMed... - Angeletti S., Ciccozzi M. (2019): Matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: An updating review. Infection Genetics and Evolution, 76: 104063.
Go to original source...
Go to PubMed... - Attallah A.M., Abdel Malak C.A., Ismail H., El-Saggan A.H., Omran M.M., Tabll A.A. (2003): Rapid and simple detection of a Mycobacterium tuberculosis circulating antigen in serum using dot-ELISA for field diagnosis of pulmonary tuberculosis. Journal of Immunoassay and Immunochemistry, 24: 79-87.
Go to original source...
Go to PubMed... - Bacanelli G., Olarte L.C., Silva M.R., Rodrigues R.A., Carneiro P.A.M., Kaneene J.B., Pasquatti T.N., Takatani H., Zumarraga M.J., Etges R.N., Araujo F.R., Verbisck N.V. (2019): Matrix assisted laser desorption ionization-time-of-flight mass spectrometry identification of Mycobacterium bovis in Bovinae. Journal of Veterinary Medical Science, 81: 1400-1408.
Go to original source...
Go to PubMed... - Balada-Llasat J.M., Kamboj K., Pancholi P. (2013): Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical laboratory. Journal of Clinical Microbiology, 51: 2875-2879.
Go to original source...
Go to PubMed... - Baliga S., Murphy C., Sharon L., Shenoy S., Biranthabail D., Weltman H., Miller S., Ramasamy R., Shah J. (2018): Rapid method for detecting and differentiating Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in sputum by fluorescence in situ hybridization with DNA probes. International Journal of Infectious Diseases, 75: 1-7.
Go to original source...
Go to PubMed... - Berney M., Hammes F., Bosshard F., Weilenmann H.U., Egli T. (2007): Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Applied and Environmental Microbiology, 73: 3283-3290.
Go to original source...
Go to PubMed... - Blanc L., Lenaerts A., Dartois V., Prideaux B. (2018): Visualization of mycobacterial biomarkers and tuberculosis drugs in infected tissue by MALDI-MS imaging. Analytical Chemistry, 90: 6275-6282.
Go to original source...
Go to PubMed... - Body B.A., Beard M.A., Slechta E.S., Hanson K.E., Barker A.P., Babady N.E., McMillen T., Tang Y.W., Brown-Elliott B.A., Iakhiaeva E., Vasireddy R., Vasireddy S., Smith T., Wallace R.J., Turner S., Curtis L., Butler-Wu S., Rychert J. (2018): Evaluation of the Vitek MS v3.0 matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Mycobacterium and Nocardia species. Journal of Clinical Microbiology, 56: e00237-18.
Go to original source...
Go to PubMed... - Bond C., Brown D., Freise A., Strain K.A. (2016): Interferometer techniques for gravitational-wave detection. Living Reviews in Relativity, 19: 1-217.
Go to original source...
Go to PubMed... - Boros-Major A., Bona A., Lovasz G., Molnar E., Marcsik A., Palfi G., Mark L. (2011): New perspectives in biomolecular paleopathology of ancient tuberculosis: A proteomic approach. Journal of Archaeological Science, 38: 197-201.
Go to original source... - Bownds S., Kurzynski T.A., Norden M.A., Dufek J.L., Schell R.F. (1996): Rapid susceptibility testing for nontuberculosis mycobacteria using flow cytometry. Journal of Clinical Microbiology, 34: 1386-1390.
Go to original source...
Go to PubMed... - Brehm-Stecher B.F. (2008): Methods for whole cell detection of microorganisms. In: Camesano T., Mello C. (eds.): Microbial Surfaces. Washington, DC, USA, ACS Symposium Series, American Chemical Society: 29-51.
Go to original source... - Broyer P., Perrot N., Rostaing H., Blaze J., Pinston F., Gervasi G., Charles M.H., Dachaud F., Dachaud J., Moulin F., Cordier S., Dauwalder O., Meugnier H., Vandenesch F. (2018): An automated sample preparation instrument to accelerate positive blood cultures microbial identification by MALDI-TOF mass spectrometry (Vitek® MS). Frontiers in Microbiology, 9: 1-14.
Go to original source...
Go to PubMed... - Bryson A.L., Hill E.M., Doern C.D. (2019): Matrix-assisted laser desorption/ionization time-of-flight: The revolution in progress. Clinics in Laboratory Medicine, 39: 391-403.
Go to original source...
Go to PubMed... - Buijtels P.C.A.M., Willemse-Erix H.F.M., Petit P.L.C., Endtz H.P., Puppels G.J., Verbrugh H.A., Van Belkum A., van Soolingen D., Maquelin K. (2008): Rapid identification of mycobacteria by Raman spectroscopy. Journal of Clinical Microbiology, 46: 961-965.
Go to original source...
Go to PubMed... - Bumbrah G.S., Sharma R.M. (2016): Raman spectroscopy - Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egyptian Journal of Forensic Sciences, 6: 209-215.
Go to original source... - Carlos C., Maretto D.A., Poppi R.J., Sato M.I.Z., Ottoboni L.M.M. (2011): Fourier transform infrared microspectroscopy as a bacterial source tracking tool to discriminate fecal E. coli strains. Microchemical Journal, 99: 15-19.
Go to original source... - Carroll P., Muwanguzi-Karugaba J., Melief E., Files M., Parish T. (2014): Identification of the translational start site of codon-optimized mCherry in Mycobacterium tuberculosis. BMC Research Notes, 7: 366-401.
Go to original source...
Go to PubMed... - Castro-Escarpulli G., Alonso-Aguilar N.M., Rivera Sánchez G., Bocanegra-Garcia V., Guo X., Juárez-Enríquez S.R., Luna-Herrera J., Martínez C.M., Aguilera-Arreola M.Q. (2015): Identification and typing methods for the study of bacterial infections: A brief review and mycobacterial as case of study. Archives of Clinical Microbiology, 7: 1-3.
- Ceyssens P.J., Soetaert K., Timke M., Van den Bossche A., Sparbier K., De Cremer K., Kostrzewa M., Hendrickx M., Mathys V. (2017): Matrix-assisted laser desorption ionization-time of flight mass spectrometry for combined species identification and drug sensitivity testing in mycobacteria. Journal of Clinical Microbiology, 55: 624-634.
Go to original source...
Go to PubMed... - Chan S., Pullerits K., Keucken A., Perssonz K.M., Paul C.J., Radstrom P. (2019): Bacterial release from pipe biofilm in a full-scale drinking water distribution system. Nature Partner Journals (npj) - Biofilms and Microbiomes, 5: 1-8.
Go to original source...
Go to PubMed... - Chang S.C., Adriaens P. (2007): Nano-immunodetection and quantification of mycobacteria in metalworking fluids. Environmental Engineering Science, 24: 58-72.
Go to original source... - Chang S.C., Anderson T.I., Bahrman S.E., Gruden C.L., Khijniak A.I., Adriaens P. (2005): Comparing recovering efficiency of immunomagnetic separation and centrifugation of mycobacteria in metalworking fluids. Journal of Industrial Microbiology and Biotechnology, 32: 629-638.
Go to original source...
Go to PubMed... - Costa M.P., Andrade C.A.S., Montenegro R.A., Melo F.L., Oliveira M.D.L. (2014): Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. Journal of Colloid and Interface Science, 433: 141-148.
Go to original source...
Go to PubMed... - Costa P., Amaro A., Botelho A., Inacio J., Baptista P.V. (2010): Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex. Clinical Microbiology and Infection, 16: 1464-1469.
Go to original source...
Go to PubMed... - Costa-Alcalde J.J., Barbeito-Castineiras G., Gonzalez-Alba J.M., Aguilera A., Galan J.C., Perez-del-Molino M.L. (2019): Comparative evaluation of the identification of rapidly growing non-tuberculous mycobacteria by mass spectrometry (MALDI-TOF MS), GenoType Mycobacterium CM/AS assay and partial sequencing of the rpo beta gene with phylogenetic analysis as a reference method. Enfermedades Infecciosas y Microbiologia Clinica, 37: 160-166.
Go to original source... - Cowan L.S., Mosher L., Diem L., Massey J.P., Crawford J.T. (2002): Variable-number-tandem repeat typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. Journal of Clinical Microbiology, 40: 1592-1602.
Go to original source...
Go to PubMed... - de Macedo C.S., Anderson D.M., Pascarelli B.M., Spraggins J.M., Sarno E.N., Schey K.L., Pessolani M.C.V. (2015): MALDI imaging reveals lipid changes in the skin of leprosy patients before and after multidrug therapy (MDT). Journal of Mass Spectrometry, 50: 1374-1385.
Go to original source...
Go to PubMed... - Di Gaudio F., Indelicato S., Indelicato S., Tricoli M.R., Stampone G., Bongiorno D. (2018): Improvement of a rapid direct blood culture microbial identification protocol using MALDI-TOF MS and performance comparison with SepsiTyper kit. Journal of Microbiological Methods, 155: 1-7.
Go to original source...
Go to PubMed... - Dina N.E., Colnita A., Szoke-Nagy T., Porav A.S. (2017): A critical review on ultrasensitive, spectroscopic-based methods for high-throughput monitoring of bacteria during infection treatment. Critical Reviews in Analytical Chemistry, 47: 499-512.
Go to original source...
Go to PubMed... - Diouani M.F., Ouerghi O., Refai A., Belgacem K., Tlili C., Laouini D., Essafi M. (2017): Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Materials Science & Engineering C-Materials for Biological Applications, 74: 465-470.
Go to original source...
Go to PubMed... - Dupont D. (2011): Immunochemical methods. In: Dupont D. (ed.): Analytical Methods | Immunochemical Methods. Encyclopedia of Dairy Sciences. Waltham, USA, Elsevier: 177-184.
Go to original source... - Eberhardt K., Stiebing C., Matthaus C., Schmitt M., Popp J. (2015): Advantages and limitations of Raman spectroscopy for molecular diagnostics: An update. Expert Review of Molecular Diagnostics, 15: 773-787.
Go to original source...
Go to PubMed... - Egawa T., Yeh S.R. (2005): Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy. Journal of Inorganic Biochemistry, 99: 72-96.
Go to original source...
Go to PubMed... - El Khechine A., Couderc C., Flaudrops C., Raoult D., Drancourt M. (2011): Matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. Plos One, 6: e24720.
Go to original source...
Go to PubMed... - Epperson L.E., Timke M., Hasan N.A., Godo P., Durbin D., Helstrom N.K., Shi G., Kostrzewa M., Strong M., Salfinger M. (2018): Evaluation of a novel MALDI Biotyper algorithm to distinguish Mycobacterium intracellulare from Mycobacterium chimaera. Frontiers in Microbiology, 9: 1-6.
Go to original source...
Go to PubMed... - Erokhina M.V., Nezlin L.P., Avdienko V.G., Voronezhska E.E., Lepekha L.N. (2016): Immunohistochemical detection of Mycobacterium tuberculosis in tissues of consumptives using laser scanning microscopy. Biology Bulletin, 43: 21-25.
Go to original source... - Falkinham J.O. (2009): Surrounded by mycobacteria: Nontuberculous mycobacteria in the human environment. Journal of Applied Microbiology, 107: 356-367.
Go to original source...
Go to PubMed... - Falkinham J.O. (2011): Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerging Infectious Diseases, 17: 419-424.
Go to original source...
Go to PubMed... - Fangous M.S., Mougari F., Gouriou S., Calvez E., Raskine L., Cambau E., Payan C., Hery-Arnaud G. (2014): Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 52: 3362-3369.
Go to original source...
Go to PubMed... - Fernandez R.E., Rohani A., Farmehini V., Swami N.S. (2017): Review: Microbial analysis in dielectrophoretic microfluidic systems. Analytica Chimica Acta, 966: 11-33.
Go to original source...
Go to PubMed... - Fuller K., Linden M.D., Lee-Pullen T., Fragall C., Erber W.N., Rohrig K.J. (2016): An active, collaborative approach to learning skills in flow cytometry. Advances in Physiology Education, 40: 176-185.
Go to original source...
Go to PubMed... - Ganareal T.A.C.S., Balbin M.M., Monserate J.J., Salazar J.R., Mingala C.N. (2018): Gold nanoparticle-based probes for the colorimetric detection of Mycobacterium avium subspecies paratuberculosis DNA. Biochemical and Biophysical Research Communications, 496: 988-997.
Go to original source...
Go to PubMed... - Gasol J.M., Del Giorgio P.A. (2000): Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Scientia Marina, 64: 197-224.
Go to original source... - Genc G.E., Demir M., Yaman G., Kayar B., Koksal F., Satana D. (2018): Evaluation of MALDI-TOF MS for identification of nontuberculous mycobacteria isolated from clinical specimens in mycobacteria growth indicator tube medium. New Microbiologica, 41: 214-219.
Go to PubMed... - Glazer C.S., Martyny J.W., Lee B., Sanchez T.L., Sells T.M., Newman L.S., Murphy J., Heifets L., Rose C.S. (2007): Nontuberculous mycobacteria in aerosol droplets and bulk water samples from therapy pools and hot tubs. Journal of Occupational and Environmental Hygiene, 4: 831-840.
Go to original source...
Go to PubMed... - Gopinath S.C.B., Perumal V., Kumaresan R., Lakshmipriya T., Rajintraprasad H., Rao B.S., Arshad M.K.M., Chen Y., Kotani N., Hashim U. (2016): Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Microchimica Acta, 183: 2697-2703.
Go to original source... - Gopinath S.C.B., Tang T.H., Chen Y., Citartan M., Lakshmipriya T. (2014): Bacterial detection: From microscope to smartphone. Biosensors & Bioelectronics, 60: 332-342.
Go to original source...
Go to PubMed... - Gori A., Bandera A., Marchetti G., Esposti A.D., Catozzi L., Nardi G.P., Gazzola L., Ferrario G., van Embden J.D.A., van Soolingen D., Moroni M., Franzetti F. (2005): Spoligotyping and Mycobacterium tuberculosis. Emerging Infectious Diseases, 11: 1242-1248.
Go to original source...
Go to PubMed... - Grenot P., Luche H. (2020): Beadless absolute counting. Application of the unique properties of the peristaltic pump fluidic based system for volumetric cell counting. Beckman Coulter, Life Sciences (White Paper). Available at https://www.beckman.com/gated-media?mediaId={59BBD0A58262-4A5E-94E5-6D0D7DF59652} (accessed Mar, 2020).
- Gruden C., Skerlos S., Adriaens P. (2004): Flow cytometry for microbial sensing in environmental sustainability applications: Current status and future prospects. Fems Microbiology Ecology, 49: 37-49.
Go to original source...
Go to PubMed... - Gupta R.S., Lo B., Son J. (2018): Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Frontiers in Microbiology, 9: 1-41.
Go to original source...
Go to PubMed... - Hajdu T., Fothi E., Kovari I., Merczi M., Molnar A., Maasz G., Avar P., Marcsik A., Mark L. (2012): Bone tuberculosis in Roman Period Pannonia (western Hungary). Memorias do Instituto Oswaldo Cruz, 107: 1048-1053.
Go to original source...
Go to PubMed... - Hamid M.E., Fraser J.L., Wallace P.A., Besra G.S., Goodfellow M., Minnikin D.E., Ridell M. (1993): Antigenic glycolipids of Mycobacterium fortuitum based on trehalose acylated with 2-methyloctadec-2-enoic acid. Letters in Applied Microbiology, 16: 132-135.
Go to original source... - Hammes F., Berney M., Wang Y., Vital M., Koster O., Egli T. (2008): Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Research, 42: 269-277.
Go to original source...
Go to PubMed... - Hammes F.A., Egli T. (2005): New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum. Environmental Science & Technology, 39: 3289-3294.
Go to original source...
Go to PubMed... - Han Y., Gu Y., Zhang A.C., Lo Y.H. (2016): Review: Imaging technologies for flow cytometry. Lab on a Chip, 16: 4639-4647.
Go to original source...
Go to PubMed... - Haridas V., Ranjbar S., Vorobjev I.A., Goldfeld A.E., Barteneva N.S. (2017): Imaging flow cytometry analysis of intracellular pathogens. Methods, 112: 91-104.
Go to original source...
Go to PubMed... - Haslam C., Hellicar J., Dunn A., Fuetterer A., Hardy N., Marshall P., Paape R., Pemberton M., Resemannand A., Leveridge M. (2016): The evolution of MALDI-TOF mass spectrometry toward ultra-high-throughput screening: 1536-well format and beyond. Journal of Biomolecular Screening, 21: 176-186.
Go to original source...
Go to PubMed... - Hayes J.M., Anderson L.C., Schultz J.A., Ugarov M., Egan T.F., Lewis E.K., Womack V., Woods A.S., Jackson S.N., Hauge R.H., Kittrell C., Ripley S., Murray K.K. (2011): Matrix assisted laser desorption ionization ion mobility time-of-flight mass spectrometry of bacteria. In: Fenselau C., Demirev P. (eds.): Rapid Characterization of Microorganisms by Mass Spectrometry. Washington, DC, USA, ACS Symposium Series, American Chemical Society: 143-160.
Go to original source... - Hendon-Dunn C.L., Doris K.S., Thomas S.R., Allnutt J.C., Marriott A.A.N., Hatch K.A., Watson R.J., Bottley G., Marsh P.D., Taylor S.C., Bacon J. (2016): A flow cytometry method for rapidly assessing Mycobacterium tuberculosis responses to antibiotics with different modes of action. Antimicrobial Agents and Chemotherapy, 60: 3869-3883.
Go to original source...
Go to PubMed... - Hettick J.M., Kashon M.L., Simpson J.P., Siegel P.D., Mazurek G.H., Weissman D.N. (2004): Proteomic profiling of intact mycobacteria by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Analytical Chemistry, 76: 5769-5776.
Go to original source...
Go to PubMed... - Hiatt L.A., Cliffel D.E. (2012): Real-time recognition of Mycobacterium tuberculosis and lipoarabinomannan using the quartz crystal microbalance. Sensors and Actuators B: Chemical, 174: 245-252.
Go to original source...
Go to PubMed... - Himmel L.E., Hackett T.A., Moore J.L., Adams W.R., Thomas G., Novitskaya T., Caprioli R. M., Zijlstra A., Mahadevan-Jansen A., Boyd K.L. (2018): Beyond the H&E: Advanced technologies for in situ tissue biomarker imaging. Ilar Journal, 59: 51-65.
Go to original source...
Go to PubMed... - Hiraiwa M., Kim J.H., Lee H.B., Inoue S., Becker A.L., Weigel K.M., Cangelosi G.A., Lee K.H., Chung J.H. (2015): Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis. Journal of Micromechanics and Microengineering, 25: 055013.
Go to original source...
Go to PubMed... - Honda J.R., Knight V., Chan E.D. (2015): Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clinics in Chest Medicine, 36: 1-11.
Go to original source...
Go to PubMed... - Hruska K., Cepica A. (2019): The Association of Nontuberculous Mycobacteria with Immune-Mediated Chronic Inflammatory and Autoimmune Diseases: A Call for Action. Brno, Czech Republic, Hruska Publishing: 46.
- Hruska K., Kaevska M. (2012): Mycobacteria in water, soil, plants and air: A review. Veterinarni Medicina, 57: 623-679.
Go to original source... - Hruska K., Pavlik I. (2014): Crohn's disease and related inflammatory diseases: from many single hypotheses to one 'superhypothesis'. Veterinarni Medicina, 59: 583-630.
Go to original source... - Humphrey D.M., Weiner M.H. (1987): Mycobacterial antigen-detection by immunohistochemistry in pulmonary tuberculosis. Human Pathology, 18: 701-708.
Go to original source...
Go to PubMed... - Inoue S., Becker A.L., Kim J.H., Shu Z.Q., Soelberg S.D., Weigel K.M., Hiraiwa M., Cairns A., Lee H.B., Furlong C.E., Oh K., Lee K.H., Gao D., Chung J.H., Cangelosi G.A. (2014): Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum. Plos One, 9: e86018.
Go to original source...
Go to PubMed... - Jang K.S., Kim Y.H. (2018): Rapid and robust MALDI-TOF MS techniques for microbial identification: A brief overview of their diverse applications. Journal of Microbiology, 56: 209-216.
Go to original source...
Go to PubMed... - Kaelin M.B., Kuster S.P., Hasse B., Schulthess B., Imkamp F., Halbe M., Sander P., Sax H., Schreiber P.W. (2020): Diversity of nontuberculous mycobacteria in heater-cooler devices - Results from prospective surveillance. The Journal of Hospital Infection, 105: 480-485.
Go to original source...
Go to PubMed... - Kim B.J., Kim B.R., Jeong J., Lim J.H., Park S.H., Lee S.H., Kim C.K., Kook Y.H., Kim B.J. (2018): A description of Mycobacterium chelonae subsp. gwanakae subsp. nov., a rapidly growing Mycobacterium with a smooth colony phenotype due to glycopeptidolipids. International Journal of Systematic and Evolutionary Microbiology, 68: 3772-3780.
Go to original source...
Go to PubMed... - Kim J., Hong S.C., Hong J.C., Chang C.L., Park T.J., Kim H.J., Lee J. (2015): Clinical immunosensing of tuberculosis CFP-10 antigen in urine using interferometric optical fiber array. Sensors and Actuators B-Chemical, 216: 184-191.
Go to original source... - Kliem M., Sauer S. (2012): The essence on mass spectrometry based microbial diagnostics. Current Opinion in Microbiology, 15: 397-402.
Go to original source...
Go to PubMed... - Kotlarz N., Rockey N., Olson T.M., Haig S.J., Sanford L., Lipuma J.J., Raskin L. (2018): Biofilms in full-scale drinking water ozone contactors contribute viable bacteria to ozonated water. Environmental Science & Technology, 52: 2618-2628.
Go to original source...
Go to PubMed... - Kuckuck F.W., Edwards B.S., Sklar L.A. (2001): High throughput flow cytometry. Cytometry, 44: 83-90.
Go to original source...
Go to PubMed... - Kuehl R., Banderet F., Egli A., Keller P.M., Frei R., Dobele T., Eckstein F., Widmer A.F. (2018): Different types of heater-cooler units and their risk of transmission of Mycobacterium chimaera during open-heart surgery: Clues from device design. Infection Control and Hospital Epidemiology, 39: 834-840.
Go to original source...
Go to PubMed... - Kumanan V., Nugen S.R., Baeumner A.J., Chang Y.F. (2009): A biosensor assay for the detection of Mycobacterium avium subsp paratuberculosis in fecal samples. Journal of Veterinary Science, 10: 35-42.
Go to original source...
Go to PubMed... - Lange J.L., Thorne P.S., Lynch N. (1997): Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria. Applied and Environmental Microbiology, 63: 1557-1563.
Go to original source...
Go to PubMed... - Larrouy-Maumus G., Puzo G. (2015): Mycobacterial envelope lipids fingerprint from direct MALDI-TOF MS analysis of intact bacilli. Tuberculosis, 95: 75-85.
Go to original source...
Go to PubMed... - Laval F., Laneelle M.A., Deon C., Monsarrat B., Daffe M. (2001): Accurate molecular mass determination of mycolic acids by MALDI-TOF mass spectrometry. Analytical Chemistry, 73: 4537-4544.
Go to original source...
Go to PubMed... - Law J.W.F., Ab Mutalib N.S., Chan K.G., Lee L.H. (2015): Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5: 1-19.
Go to original source...
Go to PubMed... - Lee H., Yoon TJ., Weissleder R. (2009): Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angewandte Chemie-International Edition, 48: 5657-5660.
Go to original source...
Go to PubMed... - Lee J., Adegoke O., Park E.Y. (2019): High-performance biosensing systems based on various nanomaterials as signal transducers. Biotechnology Journal, 14: 1800249.
Go to original source...
Go to PubMed... - Lin C.S., Su C.C., Hsieh S.C., Lu C.C., Wu T.L., Jia J.H., Wu T.S., Han C.C., Tsai W.C., Lu J.J., Lai H.C. (2015): Rapid identification of Mycobacterium avium clinical isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Microbiology Immunology and Infection, 48: 205-212.
Go to original source...
Go to PubMed... - Liong M., Hoang A.N., Chung J., Gural N., Ford C.B., Min C., Shah R.R., Ahmad R., Fernandez-Suarez M., Fortune S.M., Toner M., Lee H., Weissleder R. (2013): Magnetic barcode assay for genetic detection of pathogens. Nature Communications, 4: 1752.
Go to original source...
Go to PubMed... - Liu C., Jiang D.N., Xiang G.M., Liu L.L., Liu F., Pu X.Y. (2014): An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Analyst, 139: 5460-5465.
Go to original source...
Go to PubMed... - Liu T.T., Kong W.W., Chen N., Zhu J., Wang J.Q., He X.Q., Jin Y. (2016): Bacterial characterization of Beijing drinking water by flow cytometry and MiSeq sequencing of the 16S rRNA gene. Ecology and Evolution, 6: 923-934.
Go to original source...
Go to PubMed... - Lorenz B., Wichmann C., Stockel S., Rosch P., Popp J. (2017): Cultivation-free Raman spectroscopic investigations of bacteria. Trends in Microbiology, 25: 413-424.
Go to original source...
Go to PubMed... - Lu C.Y., Egawa T., Mukai M., Poole R.K., Yeh S.R. (2008): Hemoglobins from Mycobacterium tuberculosis and Campylobacter jejuni: A comparative study with resonance Raman spectroscopy. Globins and Other Nitric Oxide-Reactive Proteins, Part B, 437: 255-286.
Go to original source...
Go to PubMed... - Machen A., Kobayashi M., Connelly M.R., Wang Y.F. (2013): Comparison of heat inactivation and cell disruption protocols for identification of mycobacteria from solid culture media by use of Vitek matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 51: 4226-4229.
Go to original source...
Go to PubMed... - Marin P.A., Botero L.E., Robledo J.A., Murillo A.M., Torres R.A., Montagut Y.J., Pabon E., Jaramillo M. (2015): Mycobacterium tuberculosis 38 kDa antigen purification and potential diagnostic use by piezoelectric immunosensors. Acta Biologica Colombiana, 20: 129-139.
Go to original source... - Mark L., Patonai Z., Vaczy A., Lorand T., Marcsik A. (2010): High-throughput mass spectrometric analysis of 1400-year-old mycolic acids as biomarkers for ancient tuberculosis infection. Journal of Archaeological Science, 37: 302-305.
Go to original source... - Marquetoux N., Ridler A., Heuer C., Wilson P. (2019): What counts? A review of in vitro methods for the enumeration of Mycobacterium avium subsp. paratuberculosis. Veterinary Microbiology, 230: 265-272.
Go to original source...
Go to PubMed... - Mather C.A., Rivera S.F., Butler-Wu S.M. (2014): Comparison of the Bruker biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of mycobacteria using simplified protein extraction protocols. Journal of Clinical Microbiology, 52: 130-138.
Go to original source...
Go to PubMed... - Matsishin M., Rachkov A., Errachid A., Dzyadevych S., Soldatkin A. (2016): Development of impedimetric DNA biosensor for selective detection and discrimination of oligonucleotide sequences of the rpoB gene of Mycobacterium tuberculosis. Sensors and Actuators B-Chemical, 222: 1152-1158.
Go to original source... - McNerney R., Daley P. (2011): Towards a point-of-care test for active tuberculosis: Obstacles and opportunities. Nature Reviews Microbiology, 9: 204-213.
Go to original source...
Go to PubMed... - McNerney R., Wondafrash B.A., Amena K., Tesfaye A., McCash E.M., Murray N.J. (2010): Field test of a novel detection device for Mycobacterium tuberculosis antigen in cough. BMC Infectious Diseases, 10: 1-6.
Go to original source...
Go to PubMed... - McPartlin D.A., O'Kennedy R.J. (2014): Point-of-care diagnostics, a major opportunity for change in traditional diagnostic approaches: Potential and limitations. Expert Review of Molecular Diagnostics, 14: 979-998.
Go to original source...
Go to PubMed... - Mediavilla-Gradolph M.C., De Toro-Peinado I., Bermudez-Ruiz M.P., Garcia-Martinez M.D., Ortega-Torres M., Quezel-Guerraz N.M., Palop-Borras B. (2015): Use of MALDI-TOF MS for identification of nontuberculous Mycobacterium species isolated from clinical specimens. Biomed Research International, 2015: 1-6.
Go to original source...
Go to PubMed... - Michno W., Wehrli P.M., Blennow K., Zetterberg H., Hanrieder J. (2019): Molecular imaging mass spectrometry for probing protein dynamics in neurodegenerative disease pathology. Journal of Neurochemistry, 151: 488-506.
Go to original source...
Go to PubMed... - Minero G.A.S., Tefiku E., Garbarino F., Fock J., Hansen M.F. (2020): On-chip DNA analysis of tuberculosis based on magnetic nanoparticle clustering induced by rolling circle amplification products. IEEE Magnetics Letters, 11: 3100105.
Go to original source... - Miodek A., Mejri N., Gomgnimbou M., Sola C., KorriYoussoufi H. (2015): E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Analytical Chemistry, 87: 9257-9264.
Go to original source...
Go to PubMed... - Mobed A., Baradaran B., de la Guardia M., Agazadeh M., Hasanzadeh M., Rezaee M.A., Mosafer J., Mokhtarzadeh A., Hamblin M.R. (2019): Advances in detection of fastidious bacteria: From microscopic observation to molecular biosensors. TrAC - Trends in Analytical Chemistry, 113: 157-171.
Go to original source... - Monteiro J.T.C., Lima K.V.B., Barretto A.R., Furlaneto I.P., Goncalves G.M., da Costa A.R.F., Lopes M.L., Dalcolmo M.P. (2018): Clinical aspects in patients with pulmonary infection caused by mycobacteria of the Mycobacterium abscessus complex, in the Brazilian Amazon. Jornal Brasileiro de Pneumologia, 44: 93-98.
Go to original source...
Go to PubMed... - Moreno E., Miller E., Miller E., Totty H., Deol P. (2018): A novel liquid media mycobacteria extraction method for MALDI-TOF MS identification using VITEK® MS. Journal of Microbiological Methods, 144: 128-133.
Go to original source...
Go to PubMed... - Mosier-Boss P.A. (2017): Review on SERS of bacteria. Biosensors-Basel, 7: 1-26.
Go to original source...
Go to PubMed... - Muhlig A., Bocklitz T., Labugger I., Dees S., Henk S., Richter E., Andres S., Merker M., Stockel S., Weber K., Cialla-May D., Popp J. (2016): LOC-SERS: A promising closed system for the identification of mycobacteria. Analytical Chemistry, 88: 7998-8004.
Go to original source...
Go to PubMed... - Murphy B., Dempsey E. (2020): Evaluation of an Ag85B immunosensor with potential for electrochemical Mycobacterium tuberculosis diagnostics. ECS Journal of Solid State Science and Technology, 9: 115011.
Go to original source... - Mustafa T., Wiker H.G., Mfinanga S.G.M., Morkve O., Sviland L. (2006): Immunohistochemistry using a Mycobacterium tuberculosis complex specific antibody for improved diagnosis of tuberculous lymphadenitis. Modern Pathology, 19: 1606-1614.
Go to original source...
Go to PubMed... - Nagy G., Lorand T., Patonai Z., Montsko G., Bajnoczky I., Marcsik A., Mark L. (2008): Analysis of pathological and non-pathological human skeletal remains by FT-IR spectroscopy. Forensic Science International, 175: 55-60.
Go to original source...
Go to PubMed... - Nasseri B., Soleimani N., Rabiee N., Kalbasi A., Karimi M., Hamblin M.R. (2018): Point-of-care microfluidic devices for pathogen detection. Biosensors and Bioelectronics, 117: 112-128.
Go to original source...
Go to PubMed... - Neumann A.C., Bauer D., Hoelscher M., Haisch C., Wieser A. (2019): Identifying dormant growth state of mycobacteria by orthogonal analytical approaches on a single cell and ensemble basis. Analytical Chemistry, 91: 881-887.
Go to original source...
Go to PubMed... - Ng B.Y.C., Wee E.J.H., West N.P., Trau M. (2016): Naked-eye colorimetric and electrochemical detection of Mycobacterium tuberculosis - toward rapid screening for active case finding. ACS Sensors, 1: 173-178.
Go to original source... - Ng B.Y.C., Xiao W., West N.P., Wee E.J.H., Wang Y.L., Trau M. (2015): Rapid, single-cell electrochemical detection of Mycobacterium tuberculosis using colloidal gold nanoparticles. Analytical Chemistry, 87: 10613-10618.
Go to original source...
Go to PubMed... - Nishiuchi Y., Iwamoto T., Maruyama F. (2017): Infection sources of a common non-tuberculous mycobacterial pathogen, Mycobacterium avium complex. Frontiers in Medicine, 4: 1-17.
Go to original source...
Go to PubMed... - Notermans S., Wernars K. (1991): Immunological methods for detection of foodborne pathogens and their toxins. International Journal of Food Microbiology, 12: 91-102.
Go to original source...
Go to PubMed... - Novais A., Freitas A.R., Rodrigues C., Peixe L. (2019): Fourier transform infrared spectroscopy: Unlocking fundamentals and prospects for bacterial strain typing. European Journal of Clinical Microbiology & Infectious Diseases, 38: 427-448.
Go to original source...
Go to PubMed... - Nunez-Bajo E., Silva Pinto Collins A., Kasimatis M., Cotur Y., Asfour T., Tanriverdi U., Grell M., Kaisti M., Senesi G., Stevenson K., Guder F. (2020): Disposable silicon-based all-in-one micro-qPCR for apid on-site detection of pathogens. Nature Communications, 11: 6176.
Go to original source...
Go to PubMed... - Nurmalasari R., Yohan, Gaffar S., Hartati Y.W. (2015): Label-free electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis using gold electrode modified by self-assembled monolayer of thiol. Procedia Chemistry, 17: 111-117.
Go to original source... - Parikh S.J., Goyne K.W., Margenot A.J., Mukome F.N.D., Calderon F.J. (2014): Soil chemical insights provided through vibrational spectroscopy. Advances in Agronomy, 126: 1-148.
Go to original source... - Park J.S., Choi S.H., Hwang S.M., Hong Y.J., Kim T.S., Park K.U., Song J., Kim E.C. (2016): The impact of protein extraction protocols on the performance of currently available MALDI-TOF mass spectrometry for identification of mycobacterial clinical isolates cultured in liquid media. Clinica Chimica Acta, 460: 190-195.
Go to original source...
Go to PubMed... - Pashchenko O., Shelby T., Banerjee T., Santra S. (2018): A comparison of optical, electrochemical, magnetic, and colorimetric point-of-care biosensors for infectious disease diagnosis. ACS Infectious Diseases, 4: 1162-1178.
Go to original source...
Go to PubMed... - Patel R. (2015): MALDI-TOF MS for the diagnosis of infectious diseases. Clinical Chemistry, 61: 100-111.
Go to original source...
Go to PubMed... - Pence I., Mahadevan-Jansen A. (2016): Clinical instrumentation and applications of Raman spectroscopy. Chemical Society Reviews, 45: 1958-1979.
Go to original source...
Go to PubMed... - Perkins S.D., Mayfield J., Fraser V., Angenent L.T. (2009): Potentially pathogenic bacteria in shower water and air of a stem cell transplant unit. Applied and Environmental Microbiology, 75: 5363-5372.
Go to original source...
Go to PubMed... - Pesala B., Gavarna H., Kumar A., Kumaravelu C., Scaria V., Sivasubbu S. (2012): Non-invasive detection of Mycobacterium tuberculosis using IR and NIR spectroscopy. In: Proceedings of the 37th International Conference on Infrared, Millimeter, and Terahertz Waves, IEEE, Wollongong, Australia, Sept 23-28, 2012: 1-2.
Go to original source... - Pina-Vaz C., Costa-de-Oliveira S., Rodrigues A.G. (2005): Safe susceptibility testing of Mycobacterium tuberculosis by flow cytometry with the fluorescent nucleic acid stain SYTO 16. Journal of Medical Microbiology, 54: 77-81.
Go to original source...
Go to PubMed... - Pourakbari R., Shadjou N., Yousefi H., Isildak I., Yousefi M., Rashidi M.R., Khalilzadeh B. (2019): Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria. Microchimica Acta, 186: 1-13.
Go to original source...
Go to PubMed... - Prabowo B.A., Chang Y.F., Lai H.C., Alom A., Pal P., Lee Y.Y., Chiu N.F., Hatanaka K., Su L.C., Liu K.C. (2018): Rapid screening of Mycobacterium tuberculosis complex (MTBC) in clinical samples by a modular portable biosensor. Sensors and Actuators B-Chemical, 254: 742-748.
Go to original source... - Pranada A.B., Witt E., Bienia M., Kostrzewa M., Timke M. (2017): Accurate differentiation of Mycobacterium chimaera from Mycobacterium intracellulare by MALDI-TOF MS analysis. Journal of Medical Microbiology, 66: 670-677.
Go to original source...
Go to PubMed... - Prest E.I., Hammes F., Kotzsch S., van Loosdrecht M.C., Vrouwenvelder J.S. (2013): Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Research, 47: 7131-7142.
Go to original source...
Go to PubMed... - Primm T.P., Lucero C.A., Falkinham J.O. (2004): Health impacts of environmental mycobacteria. Clinical Microbiology Reviews, 17: 98-106.
Go to original source...
Go to PubMed... - Puk K., Banach T., Wawrzyniak A., Adaszek L., Zietek J., Winiarczyk S., Guz L. (2018): Detection of Mycobacterium marinum, M. peregrinum, M. fortuitum and M. abscessus in aquarium fish. Journal of Fish Diseases, 41: 153-156.
Go to original source...
Go to PubMed... - Quesada-Gonzalez D., Merkoci A. (2015): Nanoparticle-based lateral flow biosensors. Biosensors & Bioelectronics, 73: 47-63.
Go to original source...
Go to PubMed... - Quintelas C., Ferreira E.C., Lopes J.A., Sousa C. (2018): An overview of the evolution of infrared spectroscopy applied to bacterial typing. Biotechnology Journal, 13: 1700449.
Go to original source...
Go to PubMed... - Ravva S.V., Harden L.A., Sarreal C.Z. (2017): Characterization and differentiation of Mycobacterium avium subsp paratuberculosis from other mycobacteria using matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Frontiers in Cellular and Infection Microbiology, 7: 1-8.
Go to original source...
Go to PubMed... - Rebuffo-Scheer C.A., Kirschner C., Staemmler M., Naumann D. (2007): Rapid species and strain differentiation of non-tubercoulous mycobacteria by Fourier-transform infrared micro spectroscopy. Journal of Microbiological Methods, 68: 282-290.
Go to original source...
Go to PubMed... - Rivera-Betancourt O.E., Karls R., Grosse-Siestrup B., Helms S., Quinn F., Dluhy R.A. (2013): Identification of mycobacteria based on spectroscopic analyses of mycolic acid profiles. Analyst, 138: 6774-6785.
Go to original source...
Go to PubMed... - Rodriguez-Temporal D., Perez-Risco D., Struzka E.A., Mas M., Alcaide F. (2018): Evaluation of two protein extraction protocols based on freezing and mechanical disruption for identifying nontuberculous mycobacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry from liquid and solid cultures. Journal of Clinical Microbiology, 56: e01548.
Go to original source...
Go to PubMed... - Rotcheewaphan S., Lemon J.K., Desai U.U., Henderson C.M., Zelazny A.M. (2019): Rapid one-step protein extraction method for the identification of mycobacteria using MALDI-TOF MS. Diagnostic Microbiology and Infectious Disease, 94: 355-360.
Go to original source...
Go to PubMed... - Rzagalinski I., Volmer D.A. (2017): Quantification of low molecular weight compounds by MALDI imaging mass spectrometry - A tutorial review. Biochimica et Biophysica Acta-Proteins and Proteomics, 1865: 726-739.
Go to original source...
Go to PubMed... - Santos M.I., Gerbino E., Tymczyszyn E., Gomez-Zavaglia A. (2015): Applications of infrared and Raman spectroscopies to probiotic investigation. Foods, 4: 283-305.
Go to original source...
Go to PubMed... - Schopf E., Liu Y., Deng J.C., Yang S.Y., Cheng G.H., Chen Y. (2011): Mycobacterium tuberculosis detection via rolling circle amplification. Analytical Methods, 3: 267-273.
Go to original source...
Go to PubMed... - Schulze-Röbbecke R. (1993): Mycobacteria in the environment (Mykobakterien in der Umwelt). Immunitat und Infektio, 21: 126-131. (in German)
- Schulze-Röbbecke R., Fischeder R. (1989): Mycobacteria in biofilms. Zentralblatt fur Hygiene und Umweltmedizin (International journal of hygiene and environmental medicine), 188: 385-390.
Go to PubMed... - Selinummi J., Seppala J., Yli-Harja O., Puhakka J.A. (2005): Software for quantification of labeled bacteria from digital microscope images by automated image analysis. Biotechniques, 39: 859-863.
Go to original source...
Go to PubMed... - Sevilla I.A., Molina E., Elguezabal N., Perez V., Garrido J.M., Justea R.A. (2015): Detection of mycobacteria, Mycobacterium avium subspecies, and Mycobacterium tuberculosis complex by a novel tetraplex real-time PCR assay. Journal of Clinical Microbiology, 53: 930-940.
Go to original source...
Go to PubMed... - Shi H.M., Sun J.J., Han R.R., Ding C.F., Hu F.P., Yu S.N. (2020): The strategy for correcting interference from water in Fourier transform infrared spectrum based bacterial typing. Talanta, 208: 120347.
Go to original source...
Go to PubMed... - Silva L.B., Veigas B., Doria G., Costa P., Inacio J., Martins R., Fortunato E., Baptista P.V. (2011): Portable optoelectronic biosensing platform for identification of mycobacteria from the Mycobacterium tuberculosis complex. Biosensors and Bioelectronics, 26: 2012-2017.
Go to original source...
Go to PubMed... - Sin M.L.Y., Mach K.E., Wong P.K., Liao J.C. (2014): Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Review of Molecular Diagnostics, 14: 225-244.
Go to original source...
Go to PubMed... - Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. (2015): MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, 6: 1-16.
Go to original source...
Go to PubMed... - Sivanesan A., Witkowska E., Adamkiewicz W., Dziewit L., Kaminska A., Waluk J. (2014): Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst, 139: 1037-1043.
Go to original source...
Go to PubMed... - SLMB (2012): Determining the total cell count and ratios of high and low nucleic acid content cells in freshwater using flow cytometry. Analysis Method 333.1, the Swiss Food Book (Schweizerische Lebensmittelbuch). Switzerland, Federal Office of Public Health.
- Smartt A.E., Ripp S. (2011): Bacteriophage reporter technology for sensing and detecting microbial targets. Analytical and Bioanalytical Chemistry, 400: 991-1007.
Go to original source...
Go to PubMed... - Smith D.W., Randall H.M., Maclennan A.P., Putney R.K., Rao S.V. (1960): Detection of specific lipids in mycobacteria by infrared spectroscopy. Journal of Bacteriology, 79: 217-229.
Go to original source...
Go to PubMed... - Solomon I.H., Johncilla M.E., Hornick J.L., Milner D.A. (2017): The utility of immunohistochemistry in mycobacterial infection: A proposal for multimodality testing. American Journal of Surgical Pathology, 41: 1364-1370.
Go to original source...
Go to PubMed... - Soo P.C., Horng Y.T., Chang K.C., Wang J.Y., Hsueh P.R., Chuang C.Y., Lu C.C., Lai H.C. (2009): A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Molecular and Cellular Probes, 23: 240-246.
Go to original source...
Go to PubMed... - Stockel S., Meisel S., Lorenz B., Kloss S., Henk S., Dees S., Richter E., Andres S., Merker M., Labugger I., Rosch P., Popp J. (2017): Raman spectroscopic identification of Mycobacterium tuberculosis. Journal of Biophotonics, 10: 727-734.
Go to original source...
Go to PubMed... - Stockel S., Stanca A.S., Helbig J., Rosch P., Popp J. (2015): Raman spectroscopic monitoring of the growth of pigmented and non-pigmented mycobacteria. Analytical and Bioanalytical Chemistry, 407: 8919-8923.
Go to original source...
Go to PubMed... - Tang M.J., Mcewen G.D., Wu Y.Z., Miller C.D., Zhou A.H. (2013): Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy. Analytical and Bioanalytical Chemistry, 405: 1577-1591.
Go to original source...
Go to PubMed... - Thiruppathiraja C., Kamatchiammal S., Adaikkappan P., Santhosh D.J., Alagar M. (2011): Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Analytical Biochemistry, 417: 73-79.
Go to original source...
Go to PubMed... - Torres-Chavolla E., Alocilja E.C. (2011): Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosensors & Bioelectronics, 26: 4614-4618.
Go to original source...
Go to PubMed... - Tortoli E. (2006): The new mycobacteria: An update. FEMS Immunology and Medical Microbiology, 48: 159-178.
Go to original source...
Go to PubMed... - Torvinen E., Torkko P., Nevalainen A., Rintala H. (2010): Real-time PCR detection of environmental mycobacteria in house dust. Journal of Microbiological Methods, 82: 78-84.
Go to original source...
Go to PubMed... - Tseng S.P., Teng S.H., Lee P.S., Wang C.F., Yu J.S., Lu P.L. (2013): Rapid identification of M. abscessus and M. massiliense by M ALDI-TOF mass spectrometr y with a comparison to sequencing methods and antimicrobial susceptibility patterns. Future Microbiology, 8: 1381-1389.
Go to original source...
Go to PubMed... - Vaerewijck M.J.M., Huys G., Palomino J.C., Swings J., Portaels F. (2005): Mycobacteria in drinking water distribution systems: Ecology and significance for human health. FEMS Microbiology Reviews, 29: 911-934.
Go to original source...
Go to PubMed... - Van Belkum A., Durand G., Peyret M., Chatellier S., Zambardi G., Schrenzel J., Shortridge D., Engelhardt A., Dunne W.M. (2013): Rapid clinical bacteriology and its future impact. Annals of Laboratory Medicine, 33: 14-27.
Go to original source...
Go to PubMed... - Van Emon J.M. (2011): Immunoassays in biotechnology. In: Moo-Young M. (ed.): The Elsevier Encyclopedia: Comprehensive Biotechnology. 2nd Ed. Amsterdam, Netherlands, Elsevier BV: 659-667.
Go to original source... - Van Nevel S., Buysschaert B., De Roy K., De Gusseme B., Clement L., Boon N. (2017a): Flow cytometry for immediate follow-up of drinking water networks after maintenance. Water Research, 111: 66-73.
Go to original source...
Go to PubMed... - Van Nevel S., Koetzsch S., Proctor C.R., Besmer M.D., Prest E.I., Vrouwenvelder J.S., Knezev A., Boon N., Hammes F. (2017b): Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Research, 113: 191-206.
Go to original source...
Go to PubMed... - Vanhauteghem D., Audenaert K., Demeyere K., Hoogendoorn F., Janssens G.P.J., Meyer E. (2019): Flow cytometry, a powerful novel tool to rapidly assess bacterial viability in metal working fluids: Proof-of-principle. Plos One, 14: e0211583.
Go to original source...
Go to PubMed... - Veigas B., Jacob J.M., Costa M.N., Santos D.S., Viveiros M., Inacio J., Martins R., Barquinha P., Fortunato E., Baptista P.V. (2012): Gold on paper-paper platform for Au-nanoprobe TB detection. Lab on a Chip, 12: 4802-4808.
Go to original source...
Go to PubMed... - Verstijnen C.P.H.J., Ly H.M., Polman K., Richter C., Smits S.P., Maselle S.Y., Peerbooms P., Rienthong D., Montreewasuwat N., Koanjanart S., Trach D.D., Kuijper S., Kolk A.H.J. (1991): Enzyme-linked-immunosorbent-assay using monoclonal-antibodies for identification of mycobacteria from early cultures. Journal of Clinical Microbiology, 29: 1372-1375.
Go to original source...
Go to PubMed... - Vives-Rego J., Lebaron P., Nebe-von Caron G. (2000): Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiology Reviews, 24: 429-448.
Go to original source...
Go to PubMed... - Walch A., Rauser S., Deininger S.O., Hofler H. (2008): MALDI imaging mass spectrometry for direct tissue analysis: A new frontier for molecular histology. Histochemistry and Cell Biology, 130: 421-434.
Go to original source...
Go to PubMed... - Wang Y., Hammes F., Boon N., Egli T. (2007): Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 microm pore size filters and shape-dependent enrichment of filterable bacterial communities. Environmental Science & Technology, 41: 7080-7086.
Go to original source...
Go to PubMed... - Wang Y.Y., Hammes F., De Roy K., Verstraete W., Boon N. (2010): Past, present and future applications of flow cytometry in aquatic microbiology. Trends in Biotechnology, 28: 416-424.
Go to original source...
Go to PubMed... - Wayengera M., Mwebaza I., Welishe J., Bayiyana A., Kateete D.P., Wampande E., Kirimunda S., Kigozi E., Katabazi F., Musubika C., Kyobe S., Babirye P., Asiimwe B., Joloba M.L. (2020): Immuno-diagnosis of Mycobacterium tuberculosis in sputum, and reduction of timelines for its positive cultures to within 3 h by pathogen-specific thymidylate kinase expression assays. BioMed Central Research Notes, 10: 1-13.
Go to original source...
Go to PubMed... - Welker M., Van Belkum A., Girard V., Charrier J.P., Pincus D. (2019): An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Review of Proteomics, 16: 695-710.
Go to original source...
Go to PubMed... - Wenning M., Scherer S. (2013): Identification of microorganisms by FTIR spectroscopy: Perspectives and limitations of the method. Applied Microbiology and Biotechnology, 97: 7111-7120.
Go to original source...
Go to PubMed... - Winder C.L., Gordon S.V., Dale J., Hewinson R.G., Goodacre R. (2006): Metabolic fingerprints of Mycobacterium bovis cluster with molecular type: Implications for genotype-phenotype links. Microbiology, 152: 2757-2765.
Go to original source...
Go to PubMed... - Xiang Y., Deng K., Xia H., Yao C.Y., Chen Q.H., Zhang L.Q., Liu Z.Y., Fu W.L. (2013): Isothermal detection of multiple point mutations by a surface plasmon resonance biosensor with Au nanoparticles enhanced surface-anchored rolling circle amplification. Biosensors & Bioelectronics, 49: 442-449.
Go to original source...
Go to PubMed... - Xiang Y., Zhu X., Huang Q., Zheng J., Fu W. (2015): Real-time monitoring of Mycobacterium genomic DNA with targetprimed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Biosensors & Bioelectronics, 66: 512-519.
Go to original source...
Go to PubMed... - Yang F.Y., Chen J.H., Ruan Q.Q., Saqib H.S.A., He W.Y., You M.S. (2020): Mass spectrometry imaging: An emerging technology for the analysis of metabolites in insects. Archives of Insect Biochemistry and Physiology, 103: e21643.
Go to original source...
Go to PubMed... - Zhang C.Q., Song X.Q., Zhao Y., Zhang H., Zhao S.M., Mao F.F., Bai B., Wu S.P., Shi C.H. (2015): Mycobacterium tuberculosis secreted proteins as potential biomarkers for the diagnosis of active tuberculosis and latent tuberculosis infection. Journal of Clinical Laboratory Analysis, 29: 375-382.
Go to original source...
Go to PubMed... - Zribi B., Roy E., Pallandre A., Chebil S., Koubaa M., Mejri N., Gomez H.M., Sola C., Korri-Youssoufi H., Haghiri-Gosnet A.M. (2016): A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. Biomicrofluidics, 10: 014115.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.

ORCID...