Czech J. Food Sci., 2021, 39(3):169-175 | DOI: 10.17221/27/2020-CJFS

Isoflavones of the red and Hungarian clover and possible impact on animal dietOriginal Paper

Mirjana Petrovię*,1, Dejan Sokolovię1, Sne¾ana Babię1, Tomį¹ Vymyslickż2, Jordan Markovię1, Vladimir Zornię1, Zora Dajię-Stevanovię3
1 Institute for Forage Crops, Globoder, Kru¹evac, Republic of Serbia
2 Department of Genetic Resources, Research Institute for Fodder Crops, Ltd. Troubsko, Brno, Czech Republic
3 Institute of Field and Vegetable Crops, Faculty of Agriculture, University of Belgrade, Belgrade, Republic of Serbia

The content of daidzein, genistein, formononetin, and biochanin A isoflavones was studied in natural populations of red and Hungarian clover, to estimate their impact on fodder quality and to determine directions in possible breeding programs. The study included 6 red clover (Trifolium pratense) and 6 Hungarian clover (Trifolium pannonicum) populations, collected in the central Balkans. The differences between the species and among the populations were analysed. The average content of total isoflavones was 1.393 mg g-1 and 0.487 mg g-1 of air dry matter in Hungarian clover, respectively. While the most prevailed isoflavone in red clover was biochanin A (46%), the Hungarian clover populations were rich in genistein (43%). The red clover leaves accumulated the highest content of isoflavones. The Hungarian clover flowers and leaves had an equal amount of isoflavones. The obtained values of the total isoflavones could not affect the overall nutrient quality and therefore, researched natural populations of two clover species could be considered for further breeding programs.

Keywords: phytoestrogens; Trifolium pratense; Trifolium pannonicum; daidzein; genistein; formononetin

Published: June 29, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Petrovię M, Sokolovię D, Babię S, Vymyslickż T, Markovię J, Zornię V, Dajię-Stevanovię Z. Isoflavones of the red and Hungarian clover and possible impact on animal diet. Czech J. Food Sci. 2021;39(3):169-175. doi: 10.17221/27/2020-CJFS.
Download citation

References

  1. Balcells J., Aris A., Serrano A., Seradj A.R., Crespo J., Devant M. (2012): Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed highconcentrate diets. Journal of Animal Science, 90: 4975-4984. Go to original source... Go to PubMed...
  2. Bursaę M., Atanackovię M., Cvejię J., Vasiljevię S. (2011): Analysis of phytoestrogens in red clover (Analiza fitoestrogena crvene dateline). Medicina Danas, 10: 259-265. (in Serbian)
  3. Butkutė B., Leme¾ienė N., Dabkevičienė G., Jak¹tas V., Vilčinskas E., Janulis V. (2014): Source of variation of isoflavone concentrations in perennial clover species. Pharmacognosy Magazine, 10: S181-S188. Go to original source... Go to PubMed...
  4. Cvejię J., Tepavčevię V., Bursaę M., Miladinovię J., Malenčię Š. (2011): Isoflavone composition in F1 soybean progenies. Food Research International, 44: 2698-2702. Go to original source...
  5. Dabkevičienė G., Butkutė B., Jak¹ta¹ V., Janulis V. (2012): Distribution of formononetin, daidzein and genistein in Trifolium species and their aerial plant parts. Chemija, 23: 306-311.
  6. Francis C.M., Millington A.J., Bailey E.T. (1967): The distribution of oestrogenic isoflavones in the genus Trifolium. Australian Journal of Agricultural Research, 18: 47-54. Go to original source...
  7. Jiang Z.Y., Jiang S.Q., Lin Y.C., Xi P.B., Yu D.Q., Wu T.X. (2007): Effects of soybean isoflavone on growth performance, meat quality, and antioxidation in male broilers. Poultry Science, 86: 1356-1362. Go to original source... Go to PubMed...
  8. Klejdus B., Vitamvasova D., Kuban V. (1999): Reversedphase high-performance liquid chromatographic determination of isoflavones in plant materials after isolation by solid-phase extraction. Journal of Chromatography A, 839: 261-263. Go to original source...
  9. Krenn L., Unterrieder I., Ruprechter R. (2002): Quantification of isoflavones in red clover by high-performance liquid chromatography. Journal of Chromatography B, 777: 123-128. Go to original source... Go to PubMed...
  10. Kroyer G.T. (2004): Red clover extract as antioxidant active and functional food ingredient. Innovative Food Science & Emerging Technologies, 5: 101-105. Go to original source...
  11. Leme¾ienė N., Padarauskas A., Butkutė B., Cesevičienė J., Taujenis L., Norkevičienė E., Mikaliūnienė J. (2015): The concentration of isoflavones in red clover (Trifolium pratense L.) at flowering stage. Zemdirbyste-Agriculture, 102: 443-448. Go to original source...
  12. Mueller-Harvey I. (2013): Breeding for 'Healthy Hay': Can we optimise plant polyphenols in legumes for ruminant nutrition, animal health and environmental sustainability? In: Sokolovię D., Huyghe C., Radovię J. (eds.): Quantitative Traits Breeding for Multifunctional Grasslands and Turf. Vrnjačka Banja, Serbia, Springer International Publishing: 299-313. Go to original source...
  13. Morito K., Hirose T., Kinjo J. (2001): Interaction of phytoestrogens with estrogen receptors α and β. Biological & Pharmaceutical Bulletin, 24: 351-356. Go to original source... Go to PubMed...
  14. Oleszek W., Stochmal A., Janda B. (2007): Concentration of isoflavones and other phenolics in the aerial parts of Trifolium species. Journal of Agricultural and Food Chemistry, 55: 8095-8100. Go to original source... Go to PubMed...
  15. Pelikįn J., Knotovį D., Hofbauer J. (2016): Jetel panonskż (Trifolium pannonicum L.). Pķcninįųské listy, Spolek pģstitelł travnķch a jetelovżch semen (SPTJS), XXII: 7. (in Czech)
  16. Polak M., Jancova M. (2005): The effects of feeding grass and grass/clover silages on dairy cows' metabolism. In: Lillak R., Viiralt R., Lenke A., Geerman V. (eds.): Proceedings of the 13th Symposium of European Grassland Federation, Tartu, Estonia, Aug 29-31, 2005: 643-647.
  17. Radinovię I., Vasiljevię S., Zorię M., Brankovię G., ®ivanovię T., Prodanovię S. (2018): Variability of red clover genotypes on the basis of morphological markers. Genetika, 50: 895-906. Go to original source...
  18. Reynaud J., Guilet D., Terreux R., Lussignol M., Walchshofer N. (2005): Isoflavonoids in non-leguminous families: An update. Natural Product Reports, 22: 504-515. Go to original source... Go to PubMed...
  19. Ųepkovį J., Nedģlnķk J. (2014): Modern methods for genetic improvement of Trifolium pratense. Czech Journal of Genetics and Plant Breeding, 50: 92-99. Go to original source...
  20. Sazdanię D., Mikulię P.M., Kladar N., Hogervorst J., Atanackovię-Krstono¹ię M. (2018): Analysis of the factors influencing red clover (Trifolium pratense L., Fabaceae) isoflavone content. Biologia Serbica, 40: 34-41.
  21. Sivesind E., Seguin P. (2005): Effects of the environment, cultivar, maturity, and preservation method on red clover isoflavone concentration. Journal of Agricultural and Food Chemistry, 53: 6397-6402. Go to original source... Go to PubMed...
  22. Szabo T. (1987): Microevolution in Trifolium L. Sect. Stenostoma M. B. I. biometry of spontaneous and cultivated Trifolium pannonicum Jacq. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 17: 47-75.
  23. Yu J., Bi X., Yu B., Chen D. (2016): Isoflavones: anti-inflammatory benefit and possible caveats. Nutrients, 8: 361. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.