Czech J. Food Sci., 2021, 39(1):23-28 | DOI: 10.17221/135/2020-CJFS
Antioxidant potential of tea assessed by optical absorption spectroscopy in DNA-encased carbon nanotubesOriginal Paper
- 1 Department of Materials Science and Engineering, Xihua University, Chengdu, P.R. China
- 2 Department of Physics, Tokyo University of Science, Tokyo, Japan
- 3 Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, P.R. China
It is essential to develop a simple method to assess food quality quantitatively. Available methods primarily rely on nanotechnology and offer high selectivity and sensitivity. In this study, we aimed to develop a sensitive nanoprobe, and, to this end, a double-stranded DNA-encased HiPco carbon nanotube (dsDNA-HiPco) hybrid was prepared and used to evaluate the antioxidant potential of a Chinese tea against hydrogen peroxide (H2O2) with a range of irradiation wavelengths. The morphology and dispersion of the hybrids were analysed using atomic force microscopy, which showed that dsDNA wrapped on the SWCNT surface well and homogeneous dispersion of the rod-shaped tubes while the concentration of dsDNA was 1 mg mL-1. The antioxidant effect of Chinese tea was evaluated by using near-infrared absorption and photoluminescence of the hybrid. Experimental results revealed that the tea exerted excellent antioxidant effects when the hybrid was pre-treated with 0.03% wt H2O2. Catechin present in the Chinese tea played a pivotal role in exerting the antioxidant effects. Therefore, a simple detection method proposed herein can be successfully applied in various fields, including biology, medicine, and the food industry.
Keywords: antioxidant potency; atomic force microscopy; double-stranded DNA; NIR absorption spectroscopy; single-walled carbon nanotubes
Published: February 26, 2021 Show citation
References
- Blanch A.J., Shapter J.G. (2014): Surfactant concentration dependent spectral effects of oxygen and depletion interactions in sodium dodecyl sulfate dispersions of carbon nanotubes. The Journal of Physical Chemistry B, 118: 6288-6296.
Go to original source...
Go to PubMed...
- Boghossian A., Zhang J., Barone P.W., Reuel N.F., Kim J.H., Heller D.A., Ahn J.H., Hilmer A.J., Rwei A., Arkalgud J.R., Zhang C.T., Strano M.S. (2011): Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem (ChemistrySustainability-Energy-Materials), 4: 848-863.
Go to original source...
Go to PubMed...
- Chen J., Chen S., Zhao X., Kuznetsova L.V., Wong S.S., Ojima I. (2008): Functionalised single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. Journal of the American Chemical Society, 130: 16778-16785.
Go to original source...
Go to PubMed...
- Colon N., Nerin C. (2012): Role of catechins in the antioxidant capacity of an active film containing green tea, green coffee, and grapefruit extracts. Journal of Agricultural and Food Chemistry, 60: 9842-9849.
Go to original source...
Go to PubMed...
- Elhissi A.M., Ahmed W., Hassan I.U., Dhanak V.R., D'Emanuele A. (2012): Carbon nanotubes in cancer therapy and drug delivery. Journal of Drug Delivery, 2012: 837327.
Go to original source...
Go to PubMed...
- Fu D., Li L.J. (2010): Label-free electrical detection of DNA hybridisation using carbon nanotubes and grapheme. Nano Reviews, 1: 5354.
Go to original source...
Go to PubMed...
- Ishibashi Y., Ito M., Homma Y., Umemura K. (2018): Monitoring the antioxidant effects of catechin using single-walled carbon nanotubes: Comparative analysis by near-infrared absorption and near-infrared photoluminescence. Colloids and Surfaces: B Biointerfaces, 161: 139-146.
Go to original source...
Go to PubMed...
- Kim S.N., Kuang Z., Grote J.G., Farmer B.L., Naik R.R. (2008): Enrichment of (6, 5) single wall carbon nanotubes using genomic DNA. Nano Letters, 8: 4415-4420.
Go to original source...
Go to PubMed...
- Koh B., Park J.B., Hou X., Cheng W. (2011): Comparative dispersion studies of single-walled carbon nanotubes in aqueous solution. The Journal of Physical Chemistry B, 115: 2627-2633.
Go to original source...
Go to PubMed...
- Kurnosov N.V., Karachevtsev M.V., Leontiev V.S., Karachevtsev V.A., (2017): Tuning the carbon nanotube photoluminescence enhancement at addition of cysteine through the change of external conditions. Materials Chemistry and Physics, 186: 131-137.
Go to original source...
- Lei J., Ju H. (2010): Nanotubes in biosensing. WIREs Nanomedicine and Nanobiotechnology, 2: 496-509.
Go to original source...
Go to PubMed...
- Tu X., Pehrsson P.E., Zhao W. (2007): Redox reaction of DNAencased HiPco carbon nanotubes with hydrogen peroxide: A near infrared optical sensitivity and kinetics study. The Journal of Physical Chemistry C, 111: 17227-17231.
Go to original source...
- Wang L.J., Umemura K. (2019): Optical absorption spectroscopy of DNA-wrapped HiPco carbon nanotubes. Materials Science Forum, 943: 95-99.
Go to original source...
- Weisman R.B., Bachilo S.M. (2003): Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Letters, 3: 1235-1238.
Go to original source...
- Xu Y., Pehrsson P.E., Chen L., Zhang R., Zhao W. (2017): Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. The Journal Physical Chemistry C, 111: 8638-8643.
Go to original source...
- Yum K., Mcnicholas T.P., Mu B., Strano M.S. (2013): Singlewalled carbon nanotube-based near-infrared optical glucose sensors toward in vivo continuous glucose monitoring. Journal of Diabetes Science and Technology, 7: 72-87.
Go to original source...
Go to PubMed...
- Zhao E.H., Ergul B., Zhao W. (2015): Caffeine's antioxidant potency optically sensed with double-stranded DNAencased single-walled carbon nanotubes. The Journal of Physical Chemistry B, 119: 4068-4075.
Go to original source...
Go to PubMed...
- Zheng M., Jagota A., Strano M.S., Santos A.P., Barone P., Chou S.G., Diner B.A., Dresselhaus M.S., Mclean R.S., Onoa G.B., Samsonidze G.G., Semke E.D., Usrey M., Walls D.J. (2003): Structure based carbon nanotube sorting by sequence-dependent DNA assembly. Science, 302: 1545-1548.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.