Czech J. Food Sci., 2020, 38(6):375-387 | DOI: 10.17221/96/2020-CJFS

Cost analysis of drying process by studying its kinetic parameters: A new study in Mexican chilliesOriginal Paper

José Carrera-Escobedo1, Oscar Cruz-Domínguez1, César Guzmán-Valdivia2, Victor Carrera-Escobedo1, Mario García-Ruiz1, Héctor Durán-Muñoz ORCID...*,3
1 Department of Automotive Engineering, Polytechnic University of Zacatecas, Zacatecas, Mexico
2 Department of Mechanical Engineering, Autonomous University of Aguascalientes, Aguascalientes, Mexico
3 Department of Electrical and Communications Engineering, Autonomous University of Zacatecas, Zacatecas, Mexico

The drying process of vegetables is a widely used technique for food conservation. However, this process can be expensive, and the cost highly depends on the ventilation, drying temperature and drying characteristics of the chillies. The contribution of this new study was to obtain the drying kinetics parameters of two different types of Mexican Capsicum annuum (Puya and Mulato) and model it at different temperatures with two different ventilation levels. The aim of this study is to provide a method to analyse the cost of the drying process by studying its drying kinetics parameters. The experimental results were fitted to Weibull distribution and Newton's model, obtaining an adequate numerical fit at different drying temperatures. The Weibull distribution demonstrates to be a better fit than Newton's model. Drying kinetics parameters were also studied by a diffusive model with effective diffusivity. The effect of temperature on the diffusivity was described by the Arrhenius equation with activation energy of 49.7 kJ mol-1 for Puya and 24.1 kJ mol-1 for Mulato. The ventilation effect on chilli drying kinetics parameters was qualitatively assessed. As expected, the ventilation effect improved the drying rate and reduced the drying time, and consequently the cost of the drying process was reduced. In addition, a new method is presented to evaluate the cost of the drying process considering the kinetic parameters obtained. This new method allows evaluating the cost of the drying process in a simple way and with little experimental work. Consequently, it is possible to greatly reduce the cost of the drying process.

Keywords: drying kinetics; diffusivity; Capsicum annum; ventilation effect

Published: December 31, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Carrera-Escobedo J, Cruz-Domínguez O, Guzmán-Valdivia C, Carrera-Escobedo V, García-Ruiz M, Durán-Muñoz H. Cost analysis of drying process by studying its kinetic parameters: A new study in Mexican chillies. Czech J. Food Sci. 2020;38(6):375-387. doi: 10.17221/96/2020-CJFS.
Download citation

References

  1. Aissa W., El-Sallak M., Elhakem A. (2014): Performance of solar dryer chamber used for convective drying of spongecotton. Thermal Science, 18: 451-462. Go to original source...
  2. Babalis J., Papanicolaou E., Kyriakis N., Belessiotis V. (2006): Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering, 75: 205-214. Go to original source...
  3. Bagheri H., Arabhosseini A., Kianmehr M., Chegini G. (2013): Mathematical modeling of thin layer solar drying of tomato slices. Agricultural Engineering International: The CIGR e-journal. 15: 146-153.
  4. Bai J., Wang J., Xiao H., Ju H., Liu Y., Gao Z. (2013): Weibull distribution for modeling drying of grapes and its application. Transactions of the Chinese Society of Agricultural Engineering, 29: 278-285.
  5. Bakal S., Gedam K., Prakash-Sharma G. (2010): Drying characteristics and kinetics of fluidised bed dried potato. Agricultural and Food Science, 19: 127-135. Go to original source...
  6. Balbay A., Sahin O., Ulker H. (2013): Modeling of convective drying kinetics of pistachio kernels in a fixed bed drying system. Thermal Science, 17: 839-846. Go to original source...
  7. Barrientos-Sotelo V., Cano-Casas R., Cruz-Orea A., Hernández-Rosas F., Hernández-Rosas J. (2015): Photoacoustic characterization of green, red and dehydrated Capsicum annuum L. variety Pasilla. Food Biophysics, 10: 481-486. Go to original source...
  8. Béttega R., Rosa G., Corrêa G., Freire T. (2014): Comparison of carrot (Daucuscarota) drying in microwave and in vacuum microwave. Brazilian Journal of Chemical Engineering, 31: 403-412. Go to original source...
  9. Carrera-Escobedo J., Guzmán-Valdivia C., Ortiz-Rivera A., García-Ruiz M., Cruz-Domínguez O. (2019): CFD analysis for improving temperature distribution in a chilli drier. Thermal Science, 22: 255.
  10. Carrera-Escobedo J., Guzmán-Valdivia C., Ortiz-Rivera A., García-Ruiz M., Cruz-Domínguez (2019): Quantitative assessment of the improvement of the drying process by increasing the turbulence level. Thermal Science Journal, 23: 953-963. Go to original source...
  11. Cortés-Rodríguez E., Pilatowsky-Figueroa E., Ruiz-Mercado C. (2013): Feasibility analysis of drying process habanero chilli using a hybrid-solar-fluidized bed dryer in Yucatán, México. Journal of Energy and Power Engineering, 7: 1898-1908.
  12. Corzo O., Bracho N., Pereira A., Vásquez A. (2008): Weibull distribution for modeling air drying of coroba slices. LWT - Food Science and Technology, 41: 2023-2028. Go to original source...
  13. Di-Scala K., Crapiste G. (2008): Drying kinetics and quality changes during drying of red pepper. LWT - Food Science and Technology, 41: 789-795. Go to original source...
  14. Galindo G. (2007): Technical assistance service for dry chilli growers in Zacatecas (El servicio de asistencia técnica a los productores de chile seco en Zacatecas). Convergencia, 14: 137-165. (In Spanish)
  15. Ghodbanan F., Alizadeh R., Shafiei S. (2017): Optimisation for energy consumption in drying section of fluting paper machine. Thermal science, 2: 1419-1429. Go to original source...
  16. Guzmán-Valdivia C., Carrera-Escobedo J., García-Ruiz M., Ortiz-Rivera A., Désiga-Orenday O. (2016): Design, development and control of a portable laboratory for the chilli drying process study. Mechatronics, 39: 160-173. Go to original source...
  17. Hudakorn T., Katejanekarn T. (2019): Performance of a squarecorrugated air collector with attached internal fins solar drier for red chilli drying. Journal of Science and Technology. 31: 592-597.
  18. Kaewkiew J., Nabnean S., Janjai S. (2012): Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand. Procedia Engineering, 32: 433-439. Go to original source...
  19. Kiranoudis C., Maroulis Z., Tsami E., Marinos-Kouris D. (1993): Equilibrium moisture content and heat of desorption of some vegetables. Journal of Food Engineering, 20: 55-74. Go to original source...
  20. Lechtanska J., Szadzinska J., Kowalski S. (2015): Microwaveand infrared-assisted convective drying of green pepper: Quality and energy considerations. Chemical Engineering and Processing: Process Intensification, 98: 155-164. Go to original source...
  21. Marabi A., Livings S., Jacobson M., Saguy I. (2003): Normalized Weibull distribution for modeling rehydration of food particulates. European Food Research and Technology. 217: 311-318. Go to original source...
  22. Miliæ D., Milan B., Banjac M. (2016): Fluid bed drying as upgrading technology for feasible treatment of kolubara lignite. Thermal Science, 20: 167-181. Go to original source...
  23. Pal U., Khan M., Mohanty S. (2008): Heat pump drying of green sweet pepper. Drying Technology, 26: 1584-1590. Go to original source...
  24. Reis C., Castro C., Devilla A., Oliveira A., Barbosa S., Rodovalho R. (2013): Effect of drying temperature on the nutritional and antioxidant qualities of cumari peppers from pará; (Capsicum chinense Jacquin). Brazilian Journal of Chemical Engineering, 30: 337-343. Go to original source...
  25. Sacilik K. (2007): The thin-layer modelling of tomato drying process. Agriculture Conspectus Scientificus, 7: 343-349.
  26. Saeed I.E. (2010): Solar drying of roselle (Hibiscus sabdariffa L.): Effects of drying conditions on the drying constant and coefficients, and validation of the logarithmic model. Agricultural Engineering International: The CIGR e-journal, 12: 167-181.
  27. Toledo R.T. (2007): Fundamentals of Food Process Engineering. 3rd Ed. Springer Science + Business Media, 48.
  28. Turk-Togrul I., Pehlivan D. (2004): Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65: 413-425. Go to original source...
  29. Turhan M., Nazan-Turhan K., Sahbaz F. (1997): Drying kinetics of red pepper. Journal of Food Processing and Preservation, 21: 209-223. Go to original source...
  30. Tzempelikos D., Vouros A., Barkadas A., Filios A., Margaris D. (2014): Case studies on the effect of the air drying conditions on the convective drying of quinces. Case Studies in Thermal Engineering, 3: 79-85. Go to original source...
  31. Vega A., Fito P., Andrés A., Lemus R. (2007): Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). Journal of Food Engineering, 79: 1460-1466. Go to original source...
  32. Veras A., Béttega R., Freire F., Barrozo M., Freire J. (2012): Drying kinetics, structural characteristics and vitamin C retention of dedo-de-moça pepper (Capsicum baccatum) during convective and freeze drying. Brazilian Journal of Chemical Engineering, 29: 741-750. Go to original source...
  33. Villalpando-Guzmán J., Herrera-López J., Amaya-Delgado L., Godoy-Zaragoza A., Mateos-Díaz C. (2011): Effect of complementary microwave drying on three shapes of mango slices. Revista Mexicana de Ingeniería Química,10: 281-90.
  34. Yamankaradeniz N., Sokmen F., Coskun A., Kaynakli O., Pastakkaya B. (2016): Performance analysis of a re-circulating heat pump dryer. Thermal Science, 20: 267-277. Go to original source...
  35. Zeng M., Bi J., Chen Q., Jiao Y. (2015): Weibull distribution for modeling microwave vacuum drying of kiwifruit slices and its application. Journal of Chinese Institute of Food Science and Technology, 15: 129-135.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.