Czech J. Food Sci., 2020, 38(5):308-314 | DOI: 10.17221/11/2020-CJFS

Prospective antimycotoxigenic action of wild Opuntia ficus-indica by-productsOriginal Paper

Ahmed Noah Badr1, Karolina Gromadzka ORCID...*,2, Mohamed Gamal Shehata3, Kinga Stuper-Szablewska2, Kinga Drzewiecka2, Adel Gabr Abdel-Razek4
1 Food Toxicology and Contaminants Department, National Research Centre, Cairo, Egypt
2 Chemistry Department, Poznan University of Life Science, Poznań, Poland
3 Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Application, Alexandria, Egypt
4 Fats and Oils Department, National Research Centre, Cairo, Egypt

Numerous natural compounds perform pharmaceutical, antimycotic and antitoxic purposes in the body system. The aim was to evaluate new phytoconstituents that provide antimycotoxigenic properties against mycotoxins. Bioactive materials chosen were fruit peels and cladodes of wild Opuntia ficus-indica containing a measurable quantity of bioactive phytochemicals. The highest concentration of bioactive metabolites was recorded for protocatechuic and t-cinnamic acids. A reduction effect of bioactives was estimated against aflatoxins, ochratoxin A and zearalenone in a simulated body system. Antifungal activity was determined in liquid media to evaluate antimycotic properties. Lyophilised extracts caused an aflatoxin reduction in media by 14.65% to 23.77% for fruit peels and cladodes, respectively. It caused a decrease of 59% zearalenone and 51% of ochratoxin A in a in a simulated body fluid. The cladode extract manifested better antimycotic and antimycotoxigenic characteristics due to its bioactive contents. These results support a modern antimycotoxin trend of food preservation that has a considerable impact on food safety.

Keywords: mycotoxins; antimycotoxigenic; antifungal activity; phenolic acids; wild Opuntia ficus-indica

Published: October 14, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Badr AN, Gromadzka K, Shehata MG, Stuper-Szablewska K, Drzewiecka K, Abdel-Razek AG. Prospective antimycotoxigenic action of wild Opuntia ficus-indica by-products. Czech J. Food Sci. 2020;38(5):308-314. doi: 10.17221/11/2020-CJFS.
Download citation

References

  1. Abdel-Razek A., Shehata M. Badr A. Gromadzka K., Stępień Ł. (2019): The effect of chemical composition of wild Opuntia ficus indica byproducts on its nutritional quality, antioxidant and antifungal efficacy. Egyptian Journal of Chemistry, 62: 47-61. Go to original source...
  2. Ávila-Nava A., Calderón-Oliver M., Medina-Campos O.N., Zou T., Gu L., Torres N., Tovar A.R., Pedraza-Chaverri J. (2014): Extract of cactus (Opuntia ficus indica) cladodes scavenges reactive oxygen species in vitro and enhances plasma antioxidant capacity in humans. Journal of Functional Foods, 10: 13-24. Go to original source...
  3. Brahmi D., Bouaziz C., Ayed Y., Ben Mansour H., Zourgui L., Bacha H. (2011): Chemopreventive effect of cactus Opuntia ficus indica on oxidative stress and genotoxicity of aflatoxin B1. Nutrition & Metabolism, 8: 73. Go to original source... Go to PubMed...
  4. Chao C.Y., Yin M.C. (2009): Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathogens and Disease, 6: 201-206. Go to original source... Go to PubMed...
  5. Kakkar S., Bais S. (2014): A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacology, 2014: 952943. Go to original source... Go to PubMed...
  6. Katsanidis E., Addis P.B. (2001): Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Bioassays for Oxidative Stress Status, Elsevier: 3-6. Go to original source...
  7. Kurasiak-Popowska D., Stuper-Szablewska K., Nawracała J., Tomkowiak A., Perkowski J. (2016): Phenolic acid content in wheat grain (Triticum spp) of different genotypes. Revista de la Facultad de Ciencias Agrarias, 48: 1-7.
  8. Kurasiak-Popowska D., Ryńska B., Stuper-Szablewska K. (2019). Analysis of distribution of selected bioactive compounds in Camelina sativa from seeds to pomace and oil. Agronomy, 9: 168. Go to original source...
  9. Lanuzza F., Occhiuto F., Monforte M.T., Tripodo M.M., D'Angelo V., Galati E.M. (2017): Antioxidant phytochemicals of Opuntia ficus-indica (L.) Mill. cladodes with potential anti-spasmodic activity. Pharmacognosy Magazine, 13: S424-S429. Go to original source... Go to PubMed...
  10. Osuna-Martínez L., Reyes Esparza J., Rodríguez-Fragoso L. (2014): Cactus (Opuntia ficus-indica): A review on its antioxidants properties and potential pharmacological use in chronic diseases. Natural Products Chemistry
  11. Ramadan M.F., Mörsel J.T. (2003): Recovered lipids from prickly pear [Opuntia ficus-indica (L.) Mill] peel: A good source of polyunsaturated fatty acids, natural antioxidant vitamins and sterols. Food Chemistry, 83: 447-456. Go to original source...
  12. Shahat M.S., Badr A.N., Hegaziy A.I., Ramzy S., Samie M.A. (2017): Reducing the histopathological and biochemical toxicity of aflatoxins contaminated soybean using ozone treatment. Annual Research and Review in Biology, 15: 1-10. Go to original source...
  13. Shehata M.G., Badr A.N., El-Sohaimy S.A. (2018): Novel antifungal bacteriocin from Lactobacillus paracasei KC39 with anti-mycotoxigenic properties. Bioscience Research, 15: 4171-4183.
  14. Shehata M.G., Badr A.N., El-Sohaimy S.A., Asker D., Awad T.S. (2019): Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences, 64: 71-78. Go to original source...
  15. Stintzing F.C., Carle R. (2005): Cactus stems (Opuntia spp.): A review on their chemistry, technology, and uses. Molecular Nutrition Food Research International, 49: 175-194. Go to original source... Go to PubMed...
  16. Stuper-Szablewska K., Rogoziński T., Perkowski J. (2017): Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents. Archives of Industrial Hygiene Toxicology Reports, 68: 127-134. Go to original source... Go to PubMed...
  17. Tanaka T., Tanaka T., Tanaka,M. (2011): Potential cancer chemopreventive activity of protocatechuic acid. Journal of Experimental Clinical Medicine, 3: 27-33. Go to original source...
  18. Zielinski A.A.F., Haminiuk C.W.I., Alberti A., Nogueira A., Demiate I.M., Granato A. (2014): A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Research International, 60: 246-254. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.