Czech J. Food Sci., 2020, 38(5):265-272 | DOI: 10.17221/131/2018-CJFS
Effect of disulphide bonds and sulphhydryl concentrations on properties of wheat flourOriginal Paper
- 1 School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, P.R. China
- 2 School of Food Science and Technology, Henan University of Technology, Zhengzhou, P.R. China
Disulphide bonds and sulphhydryl concentrations were evaluated to determine the effects on rheological, thermodynamic, pasting, and dynamic rheological characteristics of mixed flours. Gluten samples, first treated with sodium sulphite of different concentrations, were added into flour at a 4% level, which had a significant impact on free sulphhydryl, disulphide bonds, and the ratio of the two indices. There was no relevance between the ratio and other parameters except for free sulphhydryl. The mixed flour doughs had reduced water absorption, dough development time, dough stability time as well as degree of weakening (P < 0.05). Disulphide bonds were associated negatively with the rate of starch gelatinisation (C3-C2), peak, and setback and these characteristics were correlated strongly with dough development time, dough stability time, and progressive protein weakening (C2-C1). The stability of starch gelatinisation and cooking stability of mixed flours did not remain significantly different. The larger the concentration of sodium sulphite, the higher the peak, breakdown, final viscosity, and setback values, but there were no significant differences between samples. For all samples, storage modulus and loss modulus increased with increasing scanning frequency. For mixed doughs, the trend lines of moduli decreased with increasing levels of reduction in added gluten. There was no substantial effect on thermal properties of flours.
Keywords: thermomechanics; thermodynamics; pasting; dynamic rheological characteristics
Published: October 14, 2021 Show citation
References
- Alvarezjubete L., Arendt E.K., Gallagher E. (2010): Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology, 21: 106-113.
Go to original source... - Arendt E.K., O'Brien C.M., Schober T.J., Gormley T.R., Gallagher E. (2002): Development of gluten-free cereal products. Farm and Food, 12: 21-27.
- Avi G., Lida A., Koushik S. (2012): Effects of cellulosic fibre on physical and rheological properties of starch, gluten and wheat flour. International Journal of Food Science & Technology, 45: 1641-1646.
Go to original source... - Barak S., Mudgil D., Khatkar B.S. (2013): Relationship of gliadin and glutenin proteins with dough rheology, flour pasting and bread making performance of wheat varieties. LWT - Food Science and Technology, 51: 211-217.
Go to original source... - Beveridge T., Toma D.J., Nakai S. (1974): Determination of SH- and SS-groups in some food proteins using Ellman's reagent. Journal of Food Science, 39: 49-51.
Go to original source... - Borde B., Bizot H., Vigier G., Buleon A. (2002): Calorimetric analysis of the structural relaxation in partially hydrated amorphous polysaccharides. I. Glass transition and fragility. Carbohydrate Polymers, 48: 83-96.
Go to original source... - Chen X., Schofield J.D. (1996): Changes in the glutathione content and bread-making performance of white wheat flour during shortterm storage. Cereal Chemistry, 73: 1-4.
- Delcour J.A., Joye I.J., Pareyt B., Wilderjans E., Brijs K., Lagrain B. (2012): Wheat gluten functionality as a quality determinant in cereal-based food products. Annual Review of Food Science & Technology, 3: 469-492.
Go to original source...
Go to PubMed... - Gallagher E., Gormley T.R., Arendt E.K. (2003): Crust and crumb characteristics of gluten free breads. Journal of Food Engineering, 56: 153-161.
Go to original source... - Huang W., Li L., Feng W., Wan J., Michael T., Ren C., Wu S. (2010): Effects of transglutaminase on the rheological and Mixolab thermomechanical characteristics of oat dough. Food Chemistry, 121: 934-939.
Go to original source... - Jakubauskiene L., Juodeikiene G. (2005): the relationship between protein fractions of wheat gluten and the quality of ring-shaped rolls evaluated by the echolocation method. Food Technology & Biotechnology, 43: 247-253.
- Tomiæ J., Pojiæ M., Torbica A.M., Rakita S., Zivancev D., Hajnal E.J., Hadnaðev T.D., Hadnaðev M. (2013): Changes in the content of free sulphydryl groups during postharvest wheat and flour maturation and their influence on technological quality. Journal of Cereal Science, 58: 495-501.
Go to original source... - Johansson E., Malik A.H., Hussain A., Rasheed F., Newson W.R., Plivelic T., Hedenqvist M., Gällstedt M., Kuktaite R. (2013): Wheat gluten polymer structures: the impact of genotype, environment, and processing on their functionality in various applications. Cereal Chemistry, 90: 367-376.
Go to original source... - Kasprzak M., Rzedzicki Z. (2010): Effect of pea seed coat admixture on physical properties and chemical composition of bread. International Agrophysics, 24: 149-156.
- Kuktaite R., Larsson H., Johansson E. (2004): Variation in protein composition of wheat flour and its relationship to dough mixing behaviour. Journal of Cereal Science, 40: 31-39.
Go to original source... - Li C., Lu Q., Liu Z., Yan H. (2018): Effects of the addition of gluten with different disulfide bonds and sulfhydryl concentrations on Chinese white noodle quality. Czech Journal of Food Sciences, 36: 246-254.
Go to original source... - Li M., Zhang J., Zhu K., Wang P., Zhang S., Wang B., Zhu Y., Zhou H. (2012): Effect of superfine green tea powder on the thermodynamic, rheological and fresh noodle making properties of wheat flour. LWT - Food Science and Technology, 46: 23-28.
Go to original source... - Lionetto F., Maffezzoli A., Ottenhof M., Farhat I.A., Mitchell J.R. (2010): the retrogradation of concentrated wheat starch systems. Starch-Stärke, 57: 16-24.
Go to original source... - Luo Y., Li M., Zhu K., Guo X., Wang P. (2016): Heat-induced interaction between egg white protein and wheat gluten. Food Chemistry, 197: 699-708.
Go to original source...
Go to PubMed... - Marshall W.E., Normand F.L., Goynes W.R. (1990): Effects of lipid and protein removal on starch gelatinisation in whole grain milled rice. Cereal Chemistry, 67: 458-463.
- Offia-Olua B.I. (2014): Chemical, functional and pasting properties of wheat (Triticumspp)-walnut (Juglansregia) flour. Food and Nutrition Sciences, 5: 1591-1604.
Go to original source... - Olkku J., Rha C.K. (1978): Gelatinisation of starch and wheatflour starch-review. Food Chemistry, 3: 293-317.
Go to original source... - Ptaszek A., Berski W., Ptaszek P., Witczak T., Repelewicz U., Grzesik M. (2009): Viscoelastic properties of waxy maise starch and selected non-starch hydrocolloids gels. Carbohydrate Polymers, 76: 567-577.
Go to original source... - Qi L., Li W., Liu Z., Wang J., Che B., Yang W. (2017): Determination of content of antioxidant sodium sulfite in etimicin sulfate injection with ion chromatography. Chinese Pharmaceutical Journal, 52: 1792-1794. (in Chinese)
- Rhazi L., Cazalis R., Aussenac T. (2003): Sulphydryl-disulfide changes in storage proteins of developing wheat grain: Influence on the SDS-unextractable glutenin polymer formation. Journal of Cereal Science, 38: 3-13.
Go to original source... - Rosell C.M., Collar C., Haros M. (2007): Assessment of hydrocolloid effects on the thermo-mechanical properties of wheat using the Mixolab. Food Hydrocolloids, 21: 452-462.
Go to original source... - Sabanis D., Tzia C. (2010): Effect of rice, corn and soy flour addition on characteristics of bread produced from different wheat cultivars. Food & Bioprocess Technology, 2: 68-79.
Go to original source... - Schmiele M., Felisberto M.H.F., Clerici M.T.P.S., Chang Y.K. (2016): Mixolab™ for rheological evaluation of wheat flour partially replaced by soy protein hydrolysate and fructooligosaccharides for bread production. LWT - Food Science and Technology, 73: 1-11.
Go to original source... - Traynham T.L., Myers D.J., Carriquiry A.L., Johnson L.A. (2007): Evaluation of water-holding capacity for wheatsoy flour blends. Journal of the American Oil Chemists Society, 84: 151-155.
Go to original source... - Uthayakumaran S., Wrigley C.W. (2010): Wheat: Characteristics and quality requirements. Cereal Grains, 12: 59-111.
Go to original source... - Wang P., Chen H., Bashari M., Xu L., Ning Y., Xu J., Wu F., Na Y., Jin Z., Xu X. (2012): Effect of frozen storage on physico-chemistry of wheat gluten proteins: Studies on gluten-, glutenin- and gliadin-rich fractions. Food Hydrocolloids, 39: 187-194.
Go to original source... - Wieser H. (2007): Chemistry of gluten proteins. Food Microbiology, 24: 115-119.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.

