Czech J. Food Sci., 2020, 38(2):84-93 | DOI: 10.17221/103/2018-CJFS

Effective discrimination of flavours and tastes of Chinese traditional fish soups made from different regions of the silver carp using an electronic nose and electronic tongueOriginal Paper

Zhengyi Hu1,2, Yao Tong1, Anne Manyande3, Hongying Du*,1,2
1 College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
2 National R & D Branch Centre for Conventional Freshwater Fish Processing, Wuhan, P.R. China
3 School of Human and Social Sciences, University of West London, London, UK

Silver carp is a one of the most important freshwater fish species in China, and is popular when making soup in the Chinese dietary culture. In order to investigate the profile of fish soup tastes and flavours cooked using different regions of the same fish, the silver carp was cut into four different regions: head, back, abdomen, and tail. The differences in taste and flavour of the four kinds of homemade fish soup were investigated by an electronic nose and electronic tongue. The basic chemical components of the different fish regions and the SDS-PAGE profile of the fish soup samples were investigated. Two chemometrics methods (principal component analysis and discriminant factor analysis) were used to classify the odour and taste of the fish soup samples. The results showed that the electronic tongue and nose performed outstandingly in discriminating the four fish soups even though the samples were made from different regions of the same fish. The taste and flavour information of different regions of the silver carp fish could provide the theoretical basis for food intensive processing.

Keywords: fish soup; principal component analysis; discriminant factor analysis

Published: April 30, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hu Z, Tong Y, Manyande A, Du H. Effective discrimination of flavours and tastes of Chinese traditional fish soups made from different regions of the silver carp using an electronic nose and electronic tongue. Czech J. Food Sci. 2020;38(2):84-93. doi: 10.17221/103/2018-CJFS.
Download citation

References

  1. Berna A.Z., Buysens S., Natale C.D., Grün I.U., Lammertyn J., Nicolaï B.M. (2005): Relating sensory analysis with electronic nose and headspace fingerprint MS for tomato aroma profiling. Postharvest Biology and Technology, 36: 143-155. Go to original source...
  2. Branca A., Simonian P., Ferrante M., Novas E., Negri R.M.N. (2003): Electronic nose based discrimination of a perfumery compound in a fragrance. Sensors and Actuators B Chemical, 92: 222-227. Go to original source...
  3. Cosio M.S., Ballabio D., Benedetti S., Gigliotti C. (2006): Geographical origin and authentication of extra virgin olive oils by an electronic nose in combination with artificial neural networks. Analytica Chimica Acta, 567: 202-210. Go to original source...
  4. Elez-Martínez P., Martín-Belloso O. (2007): Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chemistry, 102: 201-209. Go to original source...
  5. Fan W., Chi Y., Zhang S. (2008): The use of tea polyphenol dip to extend the shelf life of silver carp (Hypophthalmicthys molitrix) during storage in ice. Food Chemistry, 108: 148-153. Go to original source...
  6. Fan W., Sun J., Chen Y., Jian Q., Yan Z., Chi Y. (2009): Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chemistry, 115: 66-70. Go to original source...
  7. Foegeding E.A., Dayton W.R., Allen C.E. (2002): Evaluation of molecular interactions in myosin, fibrinogen, and myosin-fibrinogen gels. Journal of Agricultural and Food Chemistry, 35: 559-563. Go to original source...
  8. Fontanals N., Marcé R.M., Borrull F. (2007): New materials in sorptive extraction techniques for polar compounds. Journal of Chromatography A, 1152: 14-31. Go to original source... Go to PubMed...
  9. Fritz J.D., Swartz D.R., Greaser M.L. (1989): Factors affecting polyacrylamide gel electrophoresis and electroblotting of high-molecular-weight myofibrillar proteins myofibrillar proteins. Analytical Biochemistry, 180: 205-210. Go to original source... Go to PubMed...
  10. Funazaki N., Hemmi A., Ito S., Asano Y., Yano Y., Miura N., Yamazoe N. (1995): Application of semiconductor gas sensor to quality control of meat freshness in food industry. Sensors and Actuators B Chemical, 25: 797-800. Go to original source...
  11. Gómez A.H., Hu G., Wang J., Pereira A.G. (2006): Evaluation of tomato maturity by electronic nose. Computers & Electronics in Agriculture, 54: 44-52. Go to original source...
  12. García A M., Horrillo M.C., Santos J.P., Aleixandre M., Sayago I., Fernández M.J., Arés L., Gutiérrez J. (2003): Artificial olfactory system for the classification of Iberian hams. Sensors and Actuators B Chemical, 96: 621-629. Go to original source...
  13. Apetrei C., Ghasemi-Varnamkhasti M., Apetrei I.M. (2016) Olive Oil and Combined Electronic Nose and Tongue. In (Chapter 27) : Méndez M.L.R. (ed.) Electronic Noses and Tongues in Food Science: Academic Press, USA: 277-289. Go to original source...
  14. Guadarrama A., Rodríguez-Méndez M.L., Sanz C., Ríos J.L., Saja J.A.D. (2001): Electronic nose based on conducting polymers for the quality control of the olive oil aroma: Discrimination of quality, variety of olive and geographic origin. Analytica Chimica Acta, 432: 283-292. Go to original source...
  15. Hammond J., Marquis B., Michaels R., Oickle B., Segee B., Vetelino J., Bushway A., Camire M.E., Davis-Dentici K. (2002): A semiconducting metal-oxide array for monitoring fish freshness. Sensors and Actuators B Chemical, 84: 113-122. Go to original source...
  16. Hu Z., Li X., Wang H., Niu C., Yuan Y., Yue T. (2016): A novel method to quantify the activity of alcohol acetyltransferase using a SnO2-based sensor of electronic nose. Food Chemistry, 203: 498-504. Go to original source... Go to PubMed...
  17. Iglesias J., Medina I., Bianchi F., Careri M., Mangia A., Musci M. (2009): Study of the volatile compounds useful for the characterisation of fresh and frozen-thawed cultured gilthead sea bream fish by solid-phase microextraction gas chromatography - mass spectrometry. Food Chemistry, 115: 1473-1478. Go to original source...
  18. Jia P., Zhang W., Liu Q. (2013): Lake fisheries in China: Challenges and opportunities. Fisheries Research, 140: 66-72. Go to original source...
  19. Kiani S., Minaei S., Ghasemi-Varnamkhasti M. (2016): Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review. PloS One, 9: e113995-e113995. Go to original source...
  20. Lee D.S., Huh J.S., Lee D.D. (2003): Classifying combustible gases using micro-gas sensor array. Sensors and Actuators B Chemical, 93: 1-6. Go to original source...
  21. Lippolis V., Ferrara M., Cervellieri S., Damascelli A., Epifani F., Pascale M., Perrone G. (2015): Rapid prediction of ochratoxin A-producing strains of Penicillium on dry-cured meat by MOS-based electronic nose. International Journal of Food Microbiology, 218: 71-77. Go to original source... Go to PubMed...
  22. Maitena U., Katayama S., Sato R., Saeki H. (2004): Improved solubility and stability of carp myosin by conjugation with alginate oligosaccharide. Fisheries Science, 70: 896-902. Go to original source...
  23. Nery E.W., Kubota L.T. (2016): Integrated, paper-based potentiometric electronic tongue for the analysis of beer and wine. Analytica Chimica Acta, 918: 60-68. Go to original source... Go to PubMed...
  24. Radi, Ciptohadijoyo S., Litananda W.S., Rivai M., Purnomo M.H. (2016): Electronic nose based on partition column integrated with gas sensor for fruit identification and classification. Computers & Electronics in Agriculture, 121: 429-435. Go to original source...
  25. Rui W., Min Z., Mujumdar A.S., Sun J.C. (2009): Microwave freeze-drying characteristics and sensory quality of instant vegetable soup. Drying Technology, 27: 962-968. Go to original source...
  26. Sánchez-Moreno C., Cano M.P., Ancos B.D., Plaza L., Olmedilla B., Granado F., Elez-Martínez P., Martín-Belloso O., Martín A. (2005): Intake of Mediterranean vegetable soup treated by pulsed electric fields affects plasma vitamin C and antioxidant biomarkers in humans. International Journal of Food Sciences and Nutrition, 56: 115-124. Go to original source... Go to PubMed...
  27. Sanaeifar A., Mohtasebi S.S., Ghasemi-Varnamkhasti M., Ahmadi H. (2016): Application of MOS based electronic nose for the prediction of banana quality properties. Measurement, 82: 105-114. Go to original source...
  28. Selli S., Cayhan G.G. (2009): Analysis of volatile compounds of wild gilthead sea bream (Sparus aurata) by simultaneous distillation - extraction (SDE) and GC-MS. Microchemical Journal, 93: 232-235. Go to original source...
  29. Sikorski Z.E., Kolakowska A., Pan B.S. (1990): The nutritive composition of the major groups of marine food organisms. In Sikorski Z.E. (ed.): Seafood: Resources, nutritional composition, and preservation. CRC press, Inc., Boca Raton, USA: 29-54. Go to original source...
  30. Song S., Zhang X., Hayat K., Jia C., Xia S., Zhong F., Xiao Z., Tian H., Niu Y. (2010): Correlating chemical parameters of controlled oxidation tallow to gas chromatography - mass spectrometry profiles and e-nose responses using partial least squares regression analysis. Sensors and Actuators B Chemical, 147: 660-668. Go to original source...
  31. Xu L., Yu X., Lei L., Rui Z. (2016): A novel method for qualitative analysis of edible oil oxidation using an electronic nose. Food Chemistry, 202: 229-235. Go to original source... Go to PubMed...
  32. Yang W., Jie Y., Fei P., Mariga A.M., Ning M., Yong F., Hu Q. (2016): Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose. Food Chemistry, 196: 860-866. Go to original source... Go to PubMed...
  33. Yin Y., Tian X. (2007): Classification of Chinese drinks by a gas sensors array and combination of the PCA with Wilks distribution. Sensors and Actuators B Chemical, 124: 393-397. Go to original source...
  34. Yu H.Y., Jie Z., Li F., Tian H., Xia M. (2015): Characterization of Chinese rice wine taste attributes using liquid chromatographic analysis, sensory evaluation, and an electronic tongue. Journal of Chromatography B, 997: 129-135. Go to original source... Go to PubMed...
  35. Yu Y.X., Zhao Y. (2012): Electronic Nose Integrated with Chemometrics for Rapid Identification of Foodborne Pathogen. In: Vazmuza K. (ed.): Chemometrics in Practical Applications. InTech, Croatia: 201-212.
  36. Zhou X., Chong Y., Ding Y., Gu S., Lin L. (2016): Determination of the effects of different washing processes on aroma characteristics in silver carp mince by MMSE- GC-MS, e-nose and sensory evaluation. Food Chemistry, 207: 205-213. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.