Czech J. Food Sci., 2017, 35(3):208-213 | DOI: 10.17221/137/2016-CJFS
Comparison of innovative and non-invasive methods in estimating the fat content in pork trimmingsFood Analysis, Food Quality and Nutrition
- Division of Meat Technology, Department of Food Technology, Faculty of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
The purpose of research was to determine a possibility of application of computer vision systems (CVS) for estimation of fat content in pork trimmings in comparison with methods based on DXR (dual energy X-ray) and NIR (near-infrared reflectance spectroscopy). Research was conducted on 232 samples of pork trimmings. In order to verify the fat content determined by CVS, DXR, and NIR methods, fat content was also determined by the Soxhlet reference method. It was found that CVS can be used to estimate fat content in pork trimmings with a standard error of prediction between 4.9 and 5.6%. In order to achieve higher efficiency, it seems advisable to grind and standardise meat in a meat grinder with a kidney shaped plate.
Keywords: CVS; DXR; fat content; NIR; pork trimmings
Published: June 30, 2017 Show citation
References
- AOAC (2000): Official methods of analysis of AOAC International. 17th Ed., Gaithersburg, USA, Association of Analytical Communities.
- Brienne J.P., Denoyelle C., Baussart H., Daudin J.D. (2001): Assessment of meat fat content using dual energy X-ray absorption. Meat Science, 57: 235-244.
Go to original source...
Go to PubMed...
- CARNE 2.2. (2008): Instructions. Division of Meat Technology, Warsaw University of Life Sciences - SGGW, Poland.
- Chmiel M., Słowiński M., Dasiewicz K. (2011a): Application of computer vision systems for estimation of fat content in poultry meat. Food Control, 22: 1424-1427.
Go to original source...
- Chmiel M., Słowiński M., Dasiewicz K. (2011b): Lightness of the color measured by computer image analysis as a factor for assessing the quality of pork meat. Meat Science, 88: 566-570.
Go to original source...
Go to PubMed...
- Chmiel M., Słowiński M. (2013): Zastosowanie komputerowej analizy obrazu w technologii mięsa. Medycyna Weterynaryjna-Veterinary Medicine-Science and Practice, 69: 670-674.
- Dasiewicz K., Pisula A., Słowiński M., Noga A. (2008): Wpływ wymiany tłuszczu zwierzęcego tłuszczem roślinnym i błonnikiem pokarmowym na jakość farszów i kiełbas drobno rozdrobnionych. Żywność. Nauka. Technologia. Jakość, 59: 52-60.
- Dasiewicz K., Słowiński M., Pisula A., Chmiel M. (2010): The influence of mixing process pork trimmings on property of estimating the fat content by computer image analysis. Zeszyty Problemowe Postępów Nauk Rolniczych, 552: 47-55.
- Gaitán-Jurado A.J., Ortiz-Somovilla V., Espaňa-Espaňa F., Pérez-Aparicio J., de Pedro-Sanz E.J. (2008): Quantitative analysis of pork dry-cured sausages to quality control by NIR spectroscopy. Meat Science, 78: 391-399.
Go to original source...
Go to PubMed...
- Girolami A., Napolitano F., Faraone D., Braghieri A. (2013): Measurement of meat color using a computer vision system. Meat Science, 93: 111-118.
Go to original source...
Go to PubMed...
- Hansen P.W., Tholl I., Christensen C., Jehg H.-C., Borg J., Nielsen O., Østergaard B., Nygaard J., Andersen O. (2003): Batch accuracy of on-line fat determination. Meat Science, 64: 141-147.
Go to original source...
Go to PubMed...
- Jackman P., Sun D.W., Allen P. (2009): Automatic segmentation of beef longissimus dorsi muscle and marbling by an adaptable algorithm. Meat Science, 83: 187-194.
Go to original source...
Go to PubMed...
- Jackman P., Sun D.W., Allen P. (2010): Prediction of beef palatability from colour, marbling and surface texture features of longissimus dorsi. Journal of Food Engineering, 96: 151-165.
Go to original source...
- Mollah B.R., Hasan A., Sala A., Ali A. (2010): Digital image analysis to estimate the live weight of broiler. Computers and Electronics in Agriculture, 72: 48-52.
Go to original source...
- Pabiou T., Fikse W.F., Cromie A.R., Keane M.G., Näsholm A., Berry D.P. (2011): Use of digital images to predict carcass cut yields in cattle. Livestock Science, 137: 130-140.
Go to original source...
- Rius-Vilarrasa E., Bünger L., Maltin C., Matthews K.R., Roehe R. (2009): Evaluation of Video Image Analysis (VIA) technology to predict meat yield of sheep carcasses on-line under UK abattoir conditions. Meat Science, 82: 94-100.
Go to original source...
Go to PubMed...
- Sadkowski T., Ciecierska A., Majewska A., Oprządek J., Dasiewicz K., Ollik M., Wicik Z., Motyl T. (2014): Transcriptional background of beef marbling - Novel genes implicated in intramuscular fat deposition. Meat Science, 97: 32-41.
Go to original source...
Go to PubMed...
- Savenije B., Geesink G.H., Van Der Palen J.G.P., Hemke G. (2006): Prediction of pork quality using visible/nearinfrared reflectance spectroscopy. Meat Science, 73: 181-184.
Go to original source...
Go to PubMed...
- Valous N.A., Mendoza F., Sun D.W., Allen P. (2009): Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Science, 81: 132-141.
Go to original source...
Go to PubMed...
- Wold J.P., O'Farrell M., Høy M., Tschudi J. (2011): On-line determination and control of fat content in batches of beef trimmings by NIR imaging spectroscopy. Meat Science, 89: 317-324.
Go to original source...
Go to PubMed...
- Zheng C., Sun D.W., Zheng L. (2006): Recent developments and applications of image features for food quality evaluation and inspection - a review. Trends in Food Science and Technology, 17: 642-655.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.