Czech J. Food Sci., 2017, 35(2):113-121 | DOI: 10.17221/163/2016-CJFS

Purification and characterisation of a fungicidal peptide from Bacillus amyloliquefaciens NCPSJ7Food Microbiology and Safety

Junhua Wang1, 2, Shuangzhi Zhao1, 2, Jiying Qiu1, 2, Qingxin Zhou1, 2, Xiaoyong Liu1, 2, Xue Xin1, 2, Danyang Guo3, Tatyana G. Yudina3, Yifen Wang$1, 2, Hua Sun1, 2, Xiangyan Chen1, 2, Leilei Chen1, 2
1 Institute of Agro-food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, P.R. China
2 Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan, P.R. China
3 Department of Microbiology, Moscow State University, Moscow, Russia

Bacillus amyloliquefaciens NCPSJ7 could secrete extracellular antimicrobial substances, showing potent antifungal activities. An active peptide AFP3 was isolated from the fermentation supernatant. After chromatography, the purified peptide was tested for the fungicidal activity, molecular mass, and stability. The results indicated that the peptide with a molecular mass of around 3.3 kDa, showed discernible inhibition of the pathogen Fusarium oxysporum f. sp. niveum with the minimum fungicidal concentration of 31 µg/ml. It also exhibited excellent inhibition of some representative pathogenic fungi at a low concentration. Moreover, the peptide remained active at a wide range of temperatures and pH. Ion Na+ may even increase the antifungal activities. At the same time, the peptide could well tolerate the treatment with trypsin. Electron microscopy was used to investigate the effect of the peptide on the pathogens. The peptide inhibited the growth of pathogens by disrupting the integrity of the hyphal membranes, resulting in their lysis. The potent fungicidal activities and stability made the peptide be a candidate for a biopreservative.

Keywords: antifungal peptide; mechanism; stability; biopreservative

Published: April 30, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wang J, Zhao S, Qiu J, Zhou Q, Liu X, Xin X, et al.. Purification and characterisation of a fungicidal peptide from Bacillus amyloliquefaciens NCPSJ7. Czech J. Food Sci. 2017;35(2):113-121. doi: 10.17221/163/2016-CJFS.
Download citation

References

  1. Arguelles Arias A., Ongena M., Devreese B., Terrak M., Joris B., Fickers P. (2013): Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PloS one, 8: e83037. Go to original source... Go to PubMed...
  2. Arrebola E., Jacobs R., Korsten L. (2010): Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108: 386-395. Go to original source... Go to PubMed...
  3. Chen X.H., Koumoutsi A., Scholz R., Eisenreich A., Schneider K., Heinemeyer I., Morgenstern B., Voss B., Hess W.R., Reva O., Junge H., Voigt B., Jungblut P.R., Vater J., Sussmuth R., Liesegang H., Strittmatter A., Gottschalk G., Borriss R. (2007): Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 25: 1007-1014. Go to original source... Go to PubMed...
  4. Gerhardt P., Murray R.G.E., Costilow R.N., Nester E.W., Wood W.A., Krieg N.R., Phillips G.B. (eds) (1981): Manual of Methods for General Bacteriology. Washington D.C., American Society for Microbiology.
  5. Guo S., Li X., He P., Ho H., Wu Y., He Y. (2015): Wholegenome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. Journal of Industrial Microbiology and Biotechnology, 42: 925-937. Go to original source... Go to PubMed...
  6. Han Y.Z., Zhang B., Shen Q., You C.Z., Yu Y.Q., Li P.L., Shang Q.M. (2015): Purification and identification of two antifungal cyclic peptides produced by Bacillus amyloliquefaciens L-H15. Applied Biochemistry and Biotechnology, 176: 2202-2212. Go to original source... Go to PubMed...
  7. Hancock R.E., Sahl H.G. (2006): Antimicrobial and hostdefense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24: 1551-1557. Go to original source... Go to PubMed...
  8. Herzner A.M., Dischinger J., Szekat C., Josten M., Schmitz S., Yakeleba A., Reinartz R., Jansen A., Sahl H.G., Piel J., Bierbaum G. (2011): Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PloS one, 6: e22389. doi: 10.1371/journal.pone.0022389 Go to original source... Go to PubMed...
  9. Jasim B., Benny R., Sabu R., Mathew J., Radhakrishnan E.K. (2016): Metabolite and mechanistic basis of antifungal property exhibited by endophytic Bacillus amyloliquefaciens BmB 1. Applied Biochemistry and Biotechnology, 179: 830-845. Go to original source... Go to PubMed...
  10. Kim Y.G., Kang H.K., Kwon K.D., Seo C.H., Lee H.B., Park Y. (2015): Antagonistic activities of novel peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum. Journal of Agricultural and Food Chemistry, 63: 10380-10387. Go to original source... Go to PubMed...
  11. Li Y., Han L.R., Zhang Y., Fu X., Chen X., Zhang L., Mei R., Wang Q. (2013): Biological control of apple ring rot on fruit by Bacillus amyloliquefaciens 9001. The Plant Pathology Journal, 29: 168-173. Go to original source... Go to PubMed...
  12. Li Y., Gu Y., Li J., Xu M., Wei Q., Wang Y. (2015): Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in Microbiology, 6: 883. Go to original source... Go to PubMed...
  13. Meena K.R., Kanwar S.S. (2015): Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed Research International, 2015, Article ID 473050. doi: 10.1155/2015/473050 Go to original source... Go to PubMed...
  14. Meng Q.X., Jiang H.H., Hanson L.E., Hao J.J. (2012): Characterizing a novel strain of Bacillus amyloliquefaciens BAC03 for potential biological control application. Journal of Applied Microbiology, 113: 1165-1175. Go to original source... Go to PubMed...
  15. Nagao J.-I., Cho T., Mitarai M., Iohara K., Hayama K., Abe S., Tanaka Y. (2017): Antifungal activity in vitro and in vivo of a salmon protamine peptide and its derived cyclic peptide against Candida albicans. FEMS Yeast Research. 17 (1): fow099. doi: 10.1093/femsyr/fow099 Go to original source... Go to PubMed...
  16. Nam J., Jung M.Y., Il Kim P., Lee H.B., Kim S.W., Lee C.W. (2015): Structural characterization and temperaturedependent production of C-17-fengycin B derived from Bacillus amyloliquefaciens subsp. plantarum BC32-1. Biotechnology and Bioprocess Engineering, 20: 708-713. Go to original source...
  17. Ongena M., Jacques P. (2008): Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16: 115-125. Go to original source... Go to PubMed...
  18. Qiu J.Y., Huang L.L., Chen L.L., Zhang Q.Z., Wang W.M., Chen X.Y. (2014): Biological control of blue mold disease on pear fruit by Bacillus amyloliquefaciens NCPSJ7. Chinese Agricultural Science Bulletin, 30: 311-315. (in Chinese, abstract in English)
  19. Rasimus-Sahari S., Teplova V.V., Andersson M.A., Mikkola R., Kankkunen P., Matikainen S., Gahmberg C.G., Andersson L.C., Salkinoja-Salonen M. (2015): The peptide toxin amylosin of Bacillus amyloliquefaciens from moisturedamaged buildings is immunotoxic, induces potassium efflux from mammalian cells, and has antimicrobial activity. Applied and Environmental Microbiology, 81: 2939-2949. Go to original source... Go to PubMed...
  20. Revina L.P., Kostina L.I., Dronina M.A., Zalunin I.A., Chestukhina G.G., Yudina T.G., Konukhova A.V., Izumrudova A.V. (2005): Novel antibacterial proteins from entomocidal crystals of Bacillus thuringiensis ssp. israelensis. Canadian Journal of Microbiology, 51: 141-148. Go to original source... Go to PubMed...
  21. Schagger H. (2006): Tricine-SDS-PAGE. Nature Protocols, 1: 16-22. Go to original source... Go to PubMed...
  22. Scholz R., Molohon K.J., Nachtigall J., Vater J., Markley A.L., Sussmuth R.D., Mitchell D.A., Borriss R. (2011): Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. Journal of Bacteriology, 193: 215-224. Go to original source... Go to PubMed...
  23. Scholz R., Vater J., Budiharjo A., Wang Z., He Y., Dietel K., Schwecke T., Herfort S., Lasch P., Borriss R. (2014): Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. Journal of Bacteriology, 196: 1842-1852. Go to original source... Go to PubMed...
  24. Sellamani M., Kalagatur N.K., Siddaiah C., Mudili V., Krishna K., Natarajan G., Rao Putcha V.L. (2016): Antifungal and zearalenone inhibitory activity of Pediococcus pentosaceus isolated from dairy products on Fusarium graminearum. Frontiers in Microbiology, 7: 890. Go to original source... Go to PubMed...
  25. Sumi C.D., Yang B.W., Yeo I.C., Hahm Y.T. (2015): Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Canadian Journal of Microbiology, 61: 93-103. Go to original source... Go to PubMed...
  26. Sutyak K.E., Wirawan R.E., Aroutcheva A.A., Chikindas M.L. (2008): Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. Journal of Applied Microbiology, 104: 1067-1074. Go to original source... Go to PubMed...
  27. Wu Y., Yuan J., Raza W., Shen Q., Huang Q. (2014): Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. Journal of Microbiology and Biotechnology, 24: 1327-1336. Go to original source... Go to PubMed...
  28. Wu L., Wu H., Chen L., Yu X., Borriss R., Gao X. (2015): Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Scientific Reports, 5, Article ID 12975. doi: 10.1038/srep12975 Go to original source... Go to PubMed...
  29. Yamamoto S., Shiraishi S., Suzuki S. (2015): Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Letters in Applied Microbiology, 60: 379-386. Go to original source... Go to PubMed...
  30. Yuan J., Raza W., Shen Q., Huang Q. (2012): Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Applied and Environmental Microbiology, 78: 5942-5944. Go to original source... Go to PubMed...
  31. Zhang B., Dong C.J., Shang Q.M., Cong Y., Kong W.J., Li P.L. (2013): Purification and partial characterization of Bacillomycin L produced by Bacillus amyloliquefaciens K103 from lemon. Applied Biochemistry and Biotechnology, 171: 2262-2272. Go to original source... Go to PubMed...
  32. Zhao P.C., Quan C.S., Wang Y.G., Wang J.H., Fan S.D. (2014): Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Journal of Basic Microbiology, 54: 448-456. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.