Czech J. Food Sci., 2015, 33(6):564-569 | DOI: 10.17221/167/2015-CJFS
Evaluation of the morphologic method for the detection of animal and herbal content in minced meatFood Technology and Economy, Engineering and Physical Properties
- 1 Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- 2 Research Center for Molecular Identification of Food Hazards, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- 3 Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
The quantitative and qualitative accuracy of the routine histological method for the determination of unauthorised animal and herbal content in minced meat was to evaluated. Laboratory adulterated minced beef meat; each containing 5, 10, 15 and 20% of soya and chicken gizzard was prepared. Then each sample was divided into three parts and four paraffin embedded blocks were prepared from each part. The sections were stained using haematoxylin and eosin, toluidine blue and Masson's trichrome. The histological examination revealed the soya and gizzard tissues clearly in all the samples. The histometrical analysis showed that there was no significant difference between the estimated percentages of both additive tissues and the real related percentages. Overall, neither was there any significant difference between the data of the three parts of each sample and the real percentages. The findings of the present research suggest the histological technique as an effective method for qualitative and quantitative evaluations of minced meat.
Keywords: histology; meat; adulteration; soya; chicken gizzard
Published: December 31, 2015 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Ballin N.Z. (2010): Authentication of meat and meat products. Meat Science, 86: 577-587.
Go to original source...
Go to PubMed...
- Bednářová M., Pospiech M., Tremlová B., Řezáčová Lukášková Z., Bednář J. (2015): Antigen retrieval and fixation of sections on slides for immunohistochemical detection of soya protein in meat products. Journal of Food and Nutrition Research, 54: 1-8.
- Botka-Petrak K., Hraste A., Lucić H., Gottstein Ž., Gomerčić M.Đ., Jakšić S., Petrak T. (2011): Histological and chemical characteristics of mechanically deboned meat of broiler chickens. Veterinarski Arhiv, 81: 273-283.
- Boutten B. (1999): Quantification of soy proteins by association of immunohistochemistry and video image analysis. Food and Agricultural Immunology, 11: 51-59.
Go to original source...
- Castro F., García M.C., Rodríguez R., Rodríguez J., Marina M.L. (2007): Determination of soybean proteins in commercial heat-processed meat products prepared with chicken, beef or complex mixtures of meats from different species. Food Chemistry, 100: 468-476.
Go to original source...
- Colgrave M.L., Allingham P.G., Jones A. (2008): Hydroxyproline quantification for the estimation of collagen in tissue using multiple reaction monitoring mass spectrometry. Journal of Chromatography A, 1212: 150-153.
Go to original source...
Go to PubMed...
- Ding H.B., Xu R.J. (2000): Near-infrared spectroscopic technique for detection of beef hamburger adulteration. Journal of Agricultural and Food Chemistry, 48: 2193-2198.
Go to original source...
Go to PubMed...
- Flint F.O. (1990) Micro-technique for the identification of food hydrocolloids. Analyst, 115: 61-63.
Go to original source...
- Gout S., Valdivia H., McDwell D., Harris N. (2004): Detection of neuronal tissue in meat using tissue specific DNA modifications. Biotechnologie, Agronomie, Société et Environnement, 8: 229-234.
- Herde K., Bergmann M., Lang C., Leiser R., Wenisch S. (2005): Glial fibrillary acidic protein and myelin basic protein as markers for the immunochemical detection of bovine central nervous tissue in heat-treated meat products. Journal of Food Protection, 68: 823-827.
Go to original source...
Go to PubMed...
- Hernández M., Esteve T., Pla M. (2006): Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat. Journal of Agricultural and Food Chemistry, 54: 4076-4076.
Go to original source...
- Hsieh Y.H.P., Woodward B.B., Ho S.H. (1995): Detection of species substitution in raw and cooked meats using immunoassays. Journal of Food Protection, 58: 555-559.
Go to original source...
Go to PubMed...
- Kesmen Z., Sahin F., Yetim H. (2007): PCR assay for the identification of animal species in cooked sausages. Meat Science, 77: 649-653.
Go to original source...
Go to PubMed...
- Macedo-Silva A., Barbosa S.F.C., Alkmin M.G.A., Vaz A.J., Shimokomaki M., Tenuta-Filho A.A. (2000): Hamburger meat identification by dot-ELISA. Meat Science, 56: 189-192.
Go to original source...
Go to PubMed...
- Meyer R., Chardonnens F., Hübner P., Lüthy J. (1996): Polymerase chain reaction (PCR) in the quality and safety assurance of food: Detection of soya in processed meat products. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 203: 339-344.
Go to original source...
Go to PubMed...
- Moriyama T., Machidori M., Ozasa S., Maebuchi M., Urade R., Takahashi K., Ogawa T., Maruyama N. (2005): A novel enzyme-linked immunosorbent assay for quantification of soybean beta conglycinin, a major soybean storage protein, in soybean and soybean food products. Journal of Nutritional Science and Vitaminology, 51: 34-39.
Go to original source...
Go to PubMed...
- Lücker E., Eigenbrodt E., Wenisch S., Failing K., Leiser R., Bülte M. (1999): Development of an integrated procedure for the detection of central nervous tissue in meat products using cholesterol and neuron-specific enolase as markers. Journal of Food Protection, 62: 268-276.
Go to original source...
Go to PubMed...
- Pospiech M., Tremlová B., Renčová E., Randulová Z. (2009): Immunohistochemical detection of soya protein - Optimisation and verification of the method. Czech Journal of Food Sciences, 27: 11-19.
Go to original source...
- Pospiech M., Tremlová B., Renčová E., Randulová Z., Řezáčová-Lukášková Z., Pokorná J. (2011): Comparison of the results of the ELISA, histochemical, and immunohistochemical detection of soya proteins in meat products. Czech Journal of Food Sciences, 29: 471-479.
Go to original source...
- Prayson B.E., McMahon J.T., Prayson R.A. (2008a): Applying morphologic techniques to evaluate hotdogs: what is in the hotdogs we eat? Annals of Diagnostic Pathology, 12: 98-102.
Go to original source...
Go to PubMed...
- Prayson B., McMahon J.T., Prayson R.A. (2008b): Fast food hamburgers: what are we really eating? Annals of Diagnostic Pathology, 12: 406-409.
Go to original source...
Go to PubMed...
- Randulová Z., Tremlová B., Řezáčová-Lukášková Z., Pospiech M., Straka I. (2011): Determination of soya protein in model meat products using image analysis. Czech Journal of Food Sciences, 29: 318-321.
Go to original source...
- Rao Q., Hsieh Y.H.P. (2007): Evaluation of a commercial lateral flow feed test for rapid detection of beef and sheep content in raw and cooked meats. Meat Science, 76: 489-494.
Go to original source...
Go to PubMed...
- Renčová E., Tremlová B. (2009): ELISA for detection of soya proteins in meat products. Acta Veterinaria Brno, 78: 667-671.
Go to original source...
- Rodríguez M.A., García T., González I., Asensio L., Hernández P.E., Martín R. (2004): PCR identification of beef, sheep, goat, and pork in raw and heat-treated meat mixtures. Journal of Food Protection, 67: 172-177.
Go to original source...
Go to PubMed...
- Sifre L., Andre B., Coton J.P. (2009): Development of a system to quantify muscle fibre destructuration. Meat Science, 81: 515-522.
Go to original source...
Go to PubMed...
- Tremlová B., Starha P. (2003): Histometric evaluation of meat products: Determination of area and comparison of results obtained by histology and chemistry. Czech Journal of Food Sciences, 21: 101-106.
Go to original source...
- Tersteeg M.H., Koolmees P.A., van Knapen F. (2002): Immunohistochemical detection of brain tissue in heated meat products. Meat Science, 61: 67-72.
Go to original source...
Go to PubMed...
- Wenisch S., Lücker E., Eigenbrodt E., Leiser R., Bülte M. (1999): Detection of central nervous tissue in meat products - An immunohistochemical approach. Nutrition Research, 19: 1165-1172.
Go to original source...
- Zijderveld M.H., Koolmees P.A. (1990): Utility of immunohistochemical identification of muscle proteins in microstructural studies of comminuted meat products. Meat Science, 27: 55-60.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.