Czech J. Food Sci., 2013, 31(2):99-107 | DOI: 10.17221/240/2012-CJFS

Applications of mesoporous silica materials in food - a reviewReview

Andrea Bernardos, Lenka Kouĝimská
Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

Mesoporous silica materials have been developed for some applications in the health field. These solids are used for the controlled release of bioactive molecules, as catalysts in the synthesis of essential nutrients, as sensors to detect unhealthy products etc., with many applications in food technologies. By combining mesoporous silica materials with food, we can create healthier products, the products that improve our quality of life. The development of mesoporous materials applied to food could result in protecting bioactive molecules during their passage though the digestive system. For this reason, the controlled release of bioactive molecules is a very interesting topic for the discipline of food technology. The use of mesoporous silica supports as catalysts in the synthesis of nutrients and as sensors for the detection of unhealthy products, essential in food, is in great demand industrially for the manufacture of functional foods and films for food and industrial packaging. This review shows some examples of silica materials and their applications in food.

Keywords: bioactive molecules; healthier products; ordered solids

Published: April 30, 2013  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bernardos A, Kouĝimská L. Applications of mesoporous silica materials in food - a review. Czech J. Food Sci. 2013;31(2):99-107. doi: 10.17221/240/2012-CJFS.
Download citation

References

  1. Almeida M.G., Serra A., Silveira C.M., Moura J.J.G. (2010): Nitrite biosensing via selective enzymes - A long but promising route. Sensors, 10: 11530-11555. Go to original source... Go to PubMed...
  2. Aznar E., Martinez-Manez R., Sancenon F. (2009): Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6: 643-655. Go to original source... Go to PubMed...
  3. Bernardos A., Aznar E., Coll C., Martínez-Mañez R., Barat J.M., Marcos M.D., Sancenón F., Benito A., Soto J. (2008): Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 131: 181-189. Go to original source... Go to PubMed...
  4. Bernardos A., Aznar E., Marcos M.D., MartínezMáñez R., Sancenón F., Soto J., Barat J.M., Amorós P. (2009): Enzyme-responsive controlled release using mesoporous silica supports capped with lactose. Angewandte Chemie International Edition, 48: 5884-5887. Go to original source... Go to PubMed...
  5. Chen Q., Larismaa J., Keski-Honkola A., Vilonen K., Soderberg O., Hannula S.P. (2012): Effect of synthesis time on morphology of hollow porous silica microspheres. Materials Science-Medziagotyra, 18: 66-71. Go to original source...
  6. Clifford N.W., Iyer K.S., Raston C.L. (2008): Encapsulation and controlled release of nutraceuticals using mesoporous silica capsules. Journal of Materials Chemistry, 18: 162-165. Go to original source...
  7. Climent E., Marcos M.D., Martínez-Máñez R., Sancenón F., Soto J., Rurack K., Amorós P. (2009): The determination of methylmercury in real samples using organically capped mesoporous inorganic materials capable of signal amplification. Angewandte Chemie International Edition, 48: 8519-8522. Go to original source... Go to PubMed...
  8. Díaz I., Márquez-Alvarez C., Mohino F., Pérez-Pariente J., Sastre E. (2000a): Combined alkyl and sulfonic acid functionalization of MCM-41-type silica - Part 1. Synthesis and characterization. Journal of Catalysis, 193: 283-294. Go to original source...
  9. Díaz I., Márquez-Alvarez C., Mohino F., Pérez-Pariente J., Sastre E. (2000b): Combined alkyl and sulfonic acid functionalization of MCM-41-type silica - Part 2. Esterification of glycerol with fatty acids. Journal of Catalysis, 193: 295-302. Go to original source...
  10. Díaz I., Mohino F., Blasco T., Sastre E., Pérez-Pariente J. (2005): Influence of the alkyl chain length of HSO3-RMCM-41 on the esterification of glycerol with fatty acids. Microporous and Mesoporous Materials, 80: 33-42. Go to original source...
  11. Fruijtier-Poelloth C. (2012): The toxicological mode of action and the safety of synthetic amorphous silica - A nanostructured material. Toxicology, 294: 61-79. Go to original source... Go to PubMed...
  12. Gárcia-Acosta B., Comes M., Bricks J.L., Kudinova M.A., Kurdyukov V.V., Tolmachev A.I., Descalzo A.B., Marcos M.D., Martínez-Máñez R., Moreno A., Sancenón F., Soto J., Villaescusa L.A., Rurack K., Barat J.M., Escriche I., Amorós P. (2006): Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chemical Communications, 2239-2241. Go to original source... Go to PubMed...
  13. Gutierrez L.F., Hamoudi S., Belkacemi K. (2011): Selective production of lactobionic acid by aerobic oxidation of lactose over gold crystallites supported on mesoporous silica. Applied Catalysis A: General, 402: 94-103. Go to original source...
  14. Heirlings L., Siró I., Devlieghere F., Bavel van E., Cool P., de Meulenaer B., Vansant E.F., Debevere J. (2004): Influence of polymer matrix and adsorption onto silica materials on the migration of α-tocopherol into 95% ethanol from active packaging. Food Additives and Contaminants, 21: 1125-1136. Go to original source... Go to PubMed...
  15. Kapoor M.P., Vinu A., Fujii W., Kimura T., Yang Q.H., Kasama Y., Yanagi M., Juneja L.R. (2010): Self-assembly of mesoporous silicas hollow microspheres via food grade emulsifiers for delivery systems. Microporous and Mesoporous Materials, 128: 187-193. Go to original source...
  16. Kisler J.M., Gee M.L., Stevens G.W., O'Connor A.J. (2003): Comparative study of silylation methods to improve the stability of silicate MCM-41 in aqueous solutions. Chemistry of Materials, 15: 619-624. Go to original source...
  17. Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. (1992): Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359: 710-712. Go to original source...
  18. Liu B., Zhang B., Cui Y., Chen H., Gao Z., Tang D. (2011): Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues. ACS Applied Materials and Interfaces, 3: 4668-4676. Go to original source... Go to PubMed...
  19. Márquez-Alvarez C., Sastre E., Pérez-Pariente J. (2004): Solid catalysts for the synthesis of fatty esters of glycerol, polyglycerols and sorbitol from renewable resources. Topics in Catalysis, 27: 105-117. Go to original source...
  20. Marquis B.J., Maurer-Jones M.A., Ersin O.H., Lin Y.S., Haynes C.L. (2011): The bench scientist's perspective on the unique considerations in nanoparticle regulation. Journal of Nanoparticle Research, 13: 1389-1400. Go to original source...
  21. Melero J.A., Iglesias J., Morales G. (2009): Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chemistry, 11: 1285-1308. Go to original source...
  22. Moelans D., Cool P., Baeyens J., Vansant E.F. (2005): Immobilisation behaviour of biomolecules in mesoporous silica materials. Catalysis Communications, 6: 591-595. Go to original source...
  23. Muñoz B., Ramila A., Perez-Pariente J., Diaz I., Vallet-Regi M. (2003): MCM-41 organic modification as drug delivery rate regulator. Chemistry of Materials, 15: 500-503. Go to original source...
  24. Okuyama K., Abdullah M., Lenggoro I.W., Iskandar F. (2006): Preparation of functional nanostructured particles by spray drying. Advanced Powder Technology, 17: 587-611. Go to original source...
  25. Park S.-Y., Barton M., Pendleton P. (2011): Mesoporous silica as a natural antimicrobial carrier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 385: 256-261. Go to original source...
  26. Park S.-Y., Pendleton P. (2012): Mesoporous silica SBA-15 for natural antimicrobial delivery. Powder Technology, 223: 77-82. Go to original source...
  27. Park S.-Y., Barton M., Pendleton P. (2012): Controlled release of allyl isothiocyanate for bacteria growth management. Food Control, 23: 478-484. Go to original source...
  28. Peters R., Kramer E., Oomen A.G., Herrera Rivera Z.E., Oegema G., Tromp P.C., Fokkink R., Rietveld A., Marvin H.J.P., Weigel S., Peijnenburg A.A.C.M., Bouwmeester H. (2012): Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano, 6: 2441-2451. Go to original source... Go to PubMed...
  29. Richards M., Cloete T.E. (2010): Nanozymes for biofilm removal. In: Cloete E.T., de Kwaadsteniet M., Botes M., López-Romero J.M. (eds): Nanotechnology in Water Treatment Applications. Caister Academic Press, Norwich: 89-101.
  30. Saaid M., Saad B., Ab Rahman I., Ali A.S.M., Saleh M.I. (2010): Extraction of biogenic amines using sorbent materials containing immobilized crown ethers. Talanta, 80: 1183-1190. Go to original source... Go to PubMed...
  31. Sadeghi O., Tavassoli N., Amini M.M., Ebrahimzadeh H., Daei N. (2011): Pyridine-functionalized mesoporous silica as an adsorbent material for the determination of nickel and lead in vegetables grown in close proximity by electrothermal atomic adsorption spectroscopy. Food Chemistry, 127: 364-368. Go to original source...
  32. Srinivas D., Satyarthi J.K. (2011): Biodiesel production from vegetable oils and animal fat over solid acid double-metal cyanide catalysts. Catalysis Surveys from Asia: 15: 145-160. Go to original source...
  33. Thomas J.M., Raja R. (2006): The advantages and future potential of single-site heterogeneous catalysts. Topics in Catalysis, 40: 3-17. Go to original source...
  34. Vallet-Regi M., Rámila A., del Real R.P., Pérez-Pariente J. (2001): A new property of MCM-41: drug delivery system. Chemistry of Materials, 13: 308-311. Go to original source...
  35. Vallet-Regi M., Balas F., Arcos D. (2007): Mesoporous materials for drug delivery. Angewandte Chemie International Edition, 46: 7548-7558. Go to original source... Go to PubMed...
  36. Wang P. (2009): Multi-scale features in recent development of enzymic biocatalyst systems. Applied Biochemistry and Biotechnology, 152: 343-352. Go to original source... Go to PubMed...
  37. Wei Q., Xin X.D., Du B., Wu D., Han Y.Y., Zhao Y.F., Cai Y.Y., Li R., Yang M.H., Li H. (2010): Electrochemical immunosensor for norethisterone based on signal amplification strategy of graphene sheets and multienzyme functionalized mesoporous silica nanoparticles. Biosensors and Bioelectronics, 26: 723-729. Go to original source... Go to PubMed...
  38. Yadav G.D., Lande S.V. (2006): Selective Claisen rearrangement of allyl-2,4-di-tert-butylphenyl ether to 6-allyl-2,4di-tert-butylphenol catalysed by heteropolyacid supported on hexagonal mesoporous silica. Journal of Molecular Catalysis A: Chemical, 243: 31-39. Go to original source...
  39. Yang X., He D. (2010): Rapid determination of banned Sudan I in foodstuffs using a mesoporous SiO2 modified electrode. Journal of AOAC International, 93: 1537-1541. Go to original source... Go to PubMed...
  40. Zhang Y.W., Tiwari M.K., Jeya M., Lee J.K. (2011a): Covalent immobilization of recombinant Rhizobium etli CFN42 xylitol dehydrogenase onto modified silica nanoparticles. Applied Microbiology and Biotechnology, 90: 499-507. Go to original source... Go to PubMed...
  41. Zhang J., Yu M.H., Yuan P., Lu G.Q., Yu C.Z. (2011b): Controlled release of volatile (-)-menthol in nanoporous silica materials. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 71: 593-602. Go to original source...
  42. Zhaoa P., Yua J., Liub S., Yana M., Zanga D., Gaoa L. (2012): One novel chemiluminescence sensor for determination of fenpropathrin based on molecularly imprinted porous hollow microspheres. Sensors and Actuators B: Chemical, 162: 166-172. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.