Czech J. Food Sci., 2011, 29(3):232-242 | DOI: 10.17221/292/2010-CJFS

Application of wheat B-starch in biodegradable plastic materials

Evžen Šárka1, Zdeněk Kruliš2, Jiří Kotek2, Lubomír Růžek3, Anna Korbářová4, Zdeněk Bubník1, Michaela Růžková5
1 Department of Carbohydrate Chemistry and Technology, Faculty of Food and Biochemical Technology, Institute of Chemical Technology in Prague, Prague, Czech Republic
2 Institute of Macromolecular Chemistry AS CR, Prague, Czech Republic
3 Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
4 Department of Physics, Faculty of Chemical Engineering, Institute of Chemical Technology in Prague, Prague, Czech Republic
5 Central Institute for Supervising and Testing in Agriculture, Brno, Czech Republic

Food application of wheat B-starch comprising small starch granules as a result of lower quality is problematic. Accordingly, B-starch or acetylated starch prepared from it, with the degree of substitution (DS) of 1.5-2.3, was used in biodegradable films after blending with poly-(ε-caprolactone) (PCL). The following mechanical characteristics of the produced films were derived from the stress-strain curves: Young modulus, yield stress, stress-at-break, and strain-at-break. Water absorption of PCL/starch (60/40) films was determined according to European standard ISO 62. The measured data were compared with those of commercial A-starch. The films containing native starch degraded in compost totally during 2 months. Acetylation of starch molecules in the composites reduced the degradation rate. Optical microscopy, in combination with the image analysis system NIS-Elements vs. 2.10 completed with an Extended Depth of Focus (EDF) module, was used to study the surface morphology of PCL/starch films after 20-day and 42-day compost incubation. Chemical changes in the compost used for the film exposition were measured.

Keywords: biodegradable plastic; polycaprolactone; B-starch; wheat starch; image analysis; biodegradability

Published: June 30, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Šárka E, Kruliš Z, Kotek J, Růžek L, Korbářová A, Bubník Z, Růžková M. Application of wheat B-starch in biodegradable plastic materials. Czech J. Food Sci. 2011;29(3):232-242. doi: 10.17221/292/2010-CJFS.
Download citation

References

  1. Avella M., Bonadies E., Martuscelli E., Rimedio R. (2001): European current standardization for plastic packaging recoverable through composting and biodegradation. Polymers Testing, 20: 517-521. Go to original source...
  2. Bastioli C., Cerutti A., Guanella I., Romans G.C., Tosin M.J. (1995): Physical state and biodegradation behavior of starch-polycaprolactone systems. Journal of Environmental Polymer Degradation, 3: 81-95. Go to original source...
  3. Cesar M.E.F., Mariani P.D.S.C., Innocentini-Mei L.H., Cardoso E.J.B.N. (2009): Particle size and concentration of poly(epsilon;-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures. Polymers Testing, 28: 680-687. Go to original source...
  4. Chen D.R., Bei J.Z., Wang S.G. (2000): Polycaprolactone microparticles and their biodegradation. Polymer Degradation and Stability, 67: 455-459. Go to original source...
  5. De Baere H. (1999): Starch Policy in the European Community. Starch/Stärke, 51: 189-193. Go to original source...
  6. Du Y.L., Cao Y., Lu F., Li F., Cao Y., Wang X.L., Wang Y.Z. (2008): Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions. Polymers Testing, 27: 924-930. Go to original source...
  7. Dvořáček V., Růžek P., Vavera R. (2007): Vliv odrůdy. technologie pěstování a lokality na produkci škrobu a bioetanolu u vybraných odrůd pšenice seté. Listy cukrovarnické a řepařské, 123: 379-382.
  8. Fringant C., Rinaudo M., Gontard N., Guilbert S.E., Derradji H. (1998): A biodegradable starch based coating to waterproof hydrophylic materials. Starch/Stärke, 50: 292-296. Go to original source...
  9. Galliard T., Bowler P., Towersey P.J. (1994): In: Pomeranz Y. (ed.): Wheat is Unique. American Association of Cereal Chemists, St. Paul: 251-262.
  10. Ganjyal G.M., Reddy N., Yang Y.Q., Hanna M.A. (2004): Biodegradable packaging foams of starch acetate blended with corn stalk fibers. Journal of Applied Polymer Science, 93: 2627-2633. Go to original source...
  11. Guan J.J., Hanna M.A. (2006): Physical, mechanical, and macromolecular properties of starch acetate during extrusion foaming transformation. Industrial & Engineering Chemistry Research, 45: 3991-4000. Go to original source...
  12. Hönig V., Miler P., Hromádko J. (2008): Bioetanol jako inspirace do budoucna. Listy cukrovarnické a řepařské, 124: 203-206.
  13. Islam K.R., Weil R.R. (1998): Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biology & Fertility of Soils, 27: 408-416. Go to original source...
  14. Knight J.W., Olson R.M. (1984):In: Whistler R. (ed.): Starch: Chemistry and Technology. Academic Press, New York: 491-505. Go to original source...
  15. Koenig M.F., Huang S.T. (1995): Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer, 36: 1877-1882. Go to original source...
  16. Koláček J., Šárka E., Synytsya A., Kováčová R., Hrabal R., Bubník Z.: Charakterizace acetylovaného B-škrobu měřením velikosti částic pomocí image analysis a laserové difrakce a hodnocením spekter NMR a FT-IR spektroskopie. Im: Proceedings 5th International Conference on Polysaccharides-Glycoscience. Prague, 11.-13. 11. 2009. (CD-ROM)
  17. Kotek J., Kruliš Z., Šárka E. (2007): Využití saturačních kalů z cukrovarnického průmyslu pro výrobu polymerních kompozitů. Listy cukrovarnické a řepařské, 123: 185-187.
  18. Leeb C.V., Schumann H.P. (2007): Product design and engineering. Best practices. In: Bröckel U., Meier W., Wagner G. (eds): Raw Materials, Additives and Applications. Vol 2. Wiley-VCH, Weinheim: 395-419.
  19. Lim S.W., Jung I.K., Lee K.H., Jin B.S. (1999): Structure and properties of biodegradable gluten/aliphatic polyester blends. European Polymer Journal, 35: 1875-1881. Go to original source...
  20. Mariani P.D.S.C., Allganer K., Oliveira F.B., Cardoso E.J.B.N., Innocentini-MEI L.H. (2009): Effect of soy protein isolate on the thermal, mechanical and morphological properties of poly(epsilon;-caprolactone) and corn starch blends. Polymers Testing, 28: 824-829. Go to original source...
  21. Mikulíková D., Masár Š., Horváthová V., Kraic J. (2009): Stability of quality traits in winter wheat cultivars. Czech Journal of Food Sciences, 27: 403-417. Go to original source...
  22. Müller R.J., Kleeberg I., Deckwer W.D. (2001): Biodegradation of polyesters containing aromatic constituents. Journal of Biotechnology, 86: 87-95 Go to original source... Go to PubMed...
  23. Öhlinger R. (1996): Dehydrogenase activity with the substrate TTC. In: Schinner F., Öhlinger R., Kandeler E., Margesin R. (eds): Methods in Soil Biology. SpringerVerlag, Berlin: 241-243.
  24. Rosa D.S., Guedes C.G.F., Pedroso A.G., Calil M.R. (2004): The influence of starch gelatinization on the rheological, thermal, and morphological properties of poly(epsilon;-caprolactone) with corn starch blends. Materials Science & Engineering: C, 24: 663-670. Go to original source...
  25. Rosa D.S., Lopes D.R., Calil M.R. (2005): Thermal properties and enzymatic degradation of blends of poly(epsilon;-caprolactone) with starches. Polymers Testing, 24: 756-761. Go to original source...
  26. Rosa D.S., Lopes D.R., Calil M.R. (2007): The influence of the structure of starch on the mechanical, morphological and thermal properties of poly(epsilon;-caprolactone) in starch blends. Journal of Materials Science, 42: 2323-2328. Go to original source...
  27. Sahoo P.K., Rana P.K. (2006): Synthesis and biodegradability of starch-g-ethyl methacrylate/sodium acrylate/ sodium silicate superabsorbing composite. Journal of Materials Science, 41: 6470-6475. Go to original source...
  28. Šárka E., Bubník Z. (2009): Using image analysis to identify acetylated distarch adipate in a mixture. Starch/Stärke, 61: 457-462. Go to original source...
  29. Šárka E., Bubník Z. (2010): Morfologie, chemická struktura, vlastnosti a možnost využití pšeničného B-škrobu. Chemické Listy, 104: 318-325.
  30. Shorgen R.L. (1996): Preparation, thermal properties, and extrusion of high-amylose starch acetates. Carbohydrate Polymers, 29: 51-62. Go to original source...
  31. Singh R.P., Pandey J.K., Rutot D., Degée Ph., Dubios Ph. (2003): Biodegradation of poly(epsilon;-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydrate Research, 338: 1759-1769. Go to original source... Go to PubMed...
  32. Tabatabai M.A., Bremner J.M. (1970): Arylsulfatase activity of soils. Soil Science Society of America Journal, 34: 225-229. Go to original source...
  33. Tummala P., Liu W., Drzal L.T., Mohanty A.K., Misra M. (2006): Influence of plasticizers on thermal and mechanical properties and morphology of soy-based bioplastics. Industrial & Engineering Chemistry Research, 45: 7491-7496. Go to original source...
  34. Tuovinen L., Ruhanen E., Kinnarinen T., Rönkkö S., Pelkonen J., Urtti A., Peltonen S., Järvinen K. (2004): Starch acetate microparticles for drug delivery into retinal pigment epithelium - in vitro study. Journal of Controlled Release, 98: 407-413. Go to original source... Go to PubMed...
  35. Vance E.D., Brookes P.C., Jenkinson D.S. (1987): An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19: 703-707. Go to original source...
  36. Vong P.C., dedourge O., Lasserre-Joulin F., Guckert A. (2003): Immobilized-S, microbial biomass-S and soil arylsulfatase activity in the rhizosphere soil of rape and barley as affected by labile substrate C and N additions. Soil Biology & Biochemistry, 35: 1651-1661. Go to original source...
  37. Vong P.C., Piutti S., Slezack-Deschaumes S., Benizri E., Guckert A. (2008): Sulphur immobilization and arylsulphatase activity in two calcareous arable and fallow soils as affected by glucose additions. Geoderma, 148: 79-84. Go to original source...
  38. Wang X.L., Yang K.K., Wang Y.Y. (2003): Properties of starch blends with biodegradable biopolymers. Journal of Macromolecular Science: Polymer Reviews, 43: 385-409. Go to original source...
  39. Willet J.L. (2009): Starch in polymer compositions. In: Be Miller J., Whistler R. (eds): Starch: Chemistry and Technology. 3rd Ed. Academic Press/Elsevier, BurlingtionLondon-San Diego-New York: 715-743. Go to original source...
  40. Zhao R.X., Torley P., Halley P.J. (2008): Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. Journal of Materials Science, 43: 3058-3071. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.